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The Common Core State Standards for Mathematics (CCSSM; National Governors Asso-
ciation Center for Best Practices & Council of Chief State School Officers [NGA Center & 
CCSSO], 2010) presented a perspective on teaching fractions that will be new for many teach-
ers. One important difference is that the CCSSM presented a definition for fractions differ-
ent from the part-whole meaning many teachers currently use with students (Norton et al., 
2014). A second important difference is increased emphasis on number line representations 
of fractions and decreased emphasis on circle representations that are frequently found in 
instructional materials. These shifts will require teachers to rethink how they teach fractions 
and fraction arithmetic to their students. 

We use the Candy Bar problem to illustrate the shift in meaning for fractions put forward 
by the CCSSM: Jamal and three of his friends are sharing one candy bar. Everyone gets the 
same amount. How much of the candy bar do Jamal’s friends eat all together? Using the part-
whole meaning for fractions, teachers might explain to their students that Jamal’s friends eat 
3 out of the 4 pieces, or 3/4 of the candy bar. This meaning for fractions relies on counting the 
number of pieces in all and the number of pieces Jamal’s friends eat. Thus, both counts are 
of the same thing: pieces of the candy bar. 

In contrast, the CCSSM definition for fractions comes in two parts (NGA Center & 
CCSSO, 2010, p. 24). The first part says that just one share is 1/4 of the candy bar, because all 
four equal-sized pieces create the whole candy bar. The second part says that 3 parts, each of 
which is 1/4 of the candy bar, is 3/4 of the candy bar. The critical difference is that the CCSSM 
definition first defines a unit fraction (a fraction whose numerator is 1) and then emphasizes 
combining copies of that unit fraction. As a consequence, the CCSSM definition makes ex-
plicit a distinction between the size of the parts, 1/4 of the candy bar in this example, and the 
number of parts, 3. This distinction is not made as explicitly with the part-whole meaning 
discussed above. Attention to the size of parts is critical when comparing fractions and when 
performing arithmetic with fractions. A further advantage of the CCSSM definition is that 
it can support reasoning about improper fractions more readily than the part-whole defini-
tion: Interpreting 5/4 of a candy bar as 5 out of 4 pieces does not make sense, but thinking 
of 5 pieces that are all the same size, 1/4 of a candy bar, does, especially when fractions are 
represented as lengths. We explain this in the following paragraphs. 

Representing fractions as lengths on number lines has not been common instructional 
practice in the United States but is attractive for many reasons. One reason is that using 
lengths that start at zero emphasizes the fact that fractions like 1/4 are single numbers, not 
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pairs of whole numbers like 3 and 4. A second reason is that number lines provide a flexible 
medium with which to represent individual fractions and to develop meanings and numerical 
methods for all four arithmetic operations. A third reason is that a solid understanding of 
number lines that includes fractions provides an important foundation for subsequent topics, 
such as Cartesian graphs. 

Although there are reasons for using lengths on number lines in fractions instruction, 
many U.S. teachers know that their students have trouble making sense of number lines, and 
some research also documents students’ difficulties with fractions on number lines. For ex-
ample, Tunç-Pekkan (2015) found that a sample of 656 U.S. fourth- and fifth-grade students 
were much more proficient using circles and rectangles to represent fractions than using 
number lines: 80 percent could partition circles and rectangles to show the fractions 3/4 and 
5/6, respectively, but only 35 percent could partition a unit interval on the number line to lo-
cate 2/3. These findings may reflect U.S. students’ limited opportunities to work with lengths 
on number lines rather than persistent difficulties they might experience after instruction 
focused on number lines. 

Evidence that students can learn to use number lines effectively can be found in inter-
national comparisons of student achievement (e.g., Gonzales et al., 2008). In these compari-
sons, students from Asian countries outperform U.S. students. Furthermore, students from 
several Asian countries experience systematic development of length-based representations 
of numbers, first with whole numbers and then with fractions, beginning in early elementary 
grades and continuing into upper elementary grades (e.g., Tokyo Shoseki, 2006). Further-
more, recent research has demonstrated that U.S. students can make significant gains in their 
understandings of integers and fractions as lengths or distances on number lines (e.g., Saxe, 
Diakow, & Gearhart, 2013) when offered instruction specifically designed to support such 
understandings. 

If the CCSSM emphasizes treating fractions as lengths on number lines, and students 
in some countries that incorporate systematic development of length-based representations 
attain high levels of achievement relative to students in the United States, then it is natural 
to ask, How can we help students represent fractions on number lines in ways consistent with 
the CCSSM? In this chapter, we present some key insights from a study conducted by Izsák, 
Tillema, and Tunç-Pekkan (2008) for answering this question. The insights highlight the im-
portance of how teachers discuss partitioning and iterating lengths. Partitioning involves 
subdividing a length into equal-sized sublengths. Researchers have long considered parti-
tioning to be a key understanding in the domain of fractions, but one that is not straightfor-
ward for students (e.g., Kieren, 1980; Pothier & Sawada, 1983). Iterating involves concatenat-
ing copies of fixed length to create longer and longer lengths. As an example, one could start 
with one length of 1/4, join a second length of 1/4 to create a length of 2/4, a third to create a 
length of 3/4, a fourth to create a length of 4/4, a fifth to relate a length of 5/4, and so on. Thus, 
partitioning and iterating lengths can be used to make sense of both proper and improper 
fractions. In our JRME article (Izsák, Tillema, & Tunç-Pekkan, 2008), we examined ways 
that iterating and partitioning were important to developing students’ understanding of frac-
tions as lengths on a number line in one classroom. In the remainder of this chapter we sum-
marize the study and derive three recommendations for teachers. 

In our JRME article, we examined how one experienced sixth-grade teacher, Ms. Reese, 
and her students (all names of teachers and students used here are pseudonyms) interpreted 
lessons about fractions and fraction addition in which they participated together. Although 
the study predated the release of the CCSSM by several years, Ms. Reese’s instruction used 
number lines and emphasized partitioning lengths and iterating unit fractions. The lessons 
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Teaches Fraction 
Addition



201

Partitioning and Iterating When Teaching and Learning Fraction Addition on Number Lines

were based on a draft revision of the Bits and Pieces II unit from the Connected Mathematics 
Project (CMP) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2003). A key result from the study 
was that how Ms. Reese generated partitioned number lines in her demonstrated solutions 
to fraction addition problems had significant consequences for how her students made sense 
of the lessons. 

The following solution to 1/4 + 1/8 = 3/8 illustrates a consistent sequence of three steps that 
Ms. Reese and her students discussed for solving fraction addition problems. These three 
steps summarize Ms. Reese’s practice for teaching fraction addition, which in many ways 
was consistent with the CCSSM. The first step was to determine how many whole numbers to 
represent. Ms. Reese and her students had worked on estimating sums of fractions in earlier 
lessons. In the present example, both addends were less than 1/2, so their sum would be less 
than 1. Thus, for the current example, the interval from 0 and 1 was needed. In another case, 
students might estimate that a sum should be between 2 and 3. In such cases, intervals from 
0 to larger whole numbers were needed. The locations of whole numbers were benchmarks 
that guided the subsequent location of fractions on the number line. 

The second step was to partition unit intervals (intervals of length one) created in the 
first step. This required thought in the example of 1/4 + 1/8, because fourths and eighths are 
different-sized pieces. Ms. Reese traced the interval from 0 to 1 with her finger and asked 
her students how to “divide up this amount.” Her gestures were consistent with focusing on 
fractions as lengths. One student suggested a half; another suggested eighths. Ms. Reese took 
the second suggestion, saying that she needed “eight pieces that look about the same.” She 
made seven tick marks from left to right (fig. 18.1a), labeling them 1/8, 2/8, . . . , 7/8 (fig. 18.1b).

Fig. 18.1. Steps 2 and 3 in Ms. Reese’s demonstrated method 
for adding fractions on number lines: (a) partition unit intervals; 
(b) draw arrows for each addend and circle the answer

The third step was to draw arrows for each addend and circle the sum (fig. 18.1b). Ms. Re-
ese told the class that she could not see 1/4 on the number line, but a student pointed out that 
2/8 was the same. Ms. Reese agreed and drew one arrow for each addend as she spoke: “OK. 
So start at zero and go over to two eighths and then go over one eighth more.” Notice that 
this explanation is based on iterating unit fractions and thus is consistent with representing 
fractions as lengths on number lines and with the CCSSM definition for fractions. 

Across examples, Ms. Reese consistently partitioned unit intervals by adding tick marks 
from left to right. She was skilled at estimating spacing so that the final tick mark corre-
sponded to the 1. In cases where her final subinterval was slightly off, Ms. Reese moved the 
location of the 1 to create equal-length subintervals. To illustrate, during her solution to 2/5 + 
1/10 = 5/10, Ms. Reese pointed out that she was moving the 1 and told students: 

Ms. Reese: 	 I started putting pieces in here just eyeballing it and trying to space them out, 
and I didn’t have enough spaces, so I moved the one over and made another 
mark because I need 10 spaces. . . . This is a space [pointing with thumb and index 
finger] and you need 10 of those to be called 10th-size pieces.
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Although Ms. Reese consistently counted spaces, focusing on lengths, we learned that ad-
justing the location of the 1 had unintentional consequences for some of her students. Thus, 
deciding whether or not to move the 1 is an important piece of expertise when using lengths 
on number lines to represent fractions for students. 

As part of the study, the first author conducted sequences of interviews with pairs of students 
from Ms. Reese’s class. Ms. Reese helped identify students with a range of success but who 
were not exceptional. During the interviews, the first author asked the students to work tasks 
similar to those used in the Bits and Pieces II lessons and to interpret short excerpts of Ms. 
Reese’s video recorded lessons. 

From the interviews we learned that students had different interpretations of moving 
the 1 when “eyeballing” was a little off. Students who had a strong understanding of a fixed 
whole unit interpreted the lesson in ways similar to Ms. Reese’s intentions, as just a conve-
nient adjustment so the tick marks did not have to be erased and redrawn. Students who did 
not have a strong understanding of a fixed whole unit, however, interpreted the lessons in 
ways that Ms. Reese did not intend. 

Sonya was one student who interpreted the lessons in ways Ms. Reese did not intend. 
Ms. Reese identified Sonya and her interview partner, Jenny, as students who were often 
confused. During their third interview, Sonya and Jenny represented 2/3 + 3/4 using a number 
line. Sonya’s approach paralleled the three-step method that Ms. Reese had demonstrated 
several times by this point. First, Sonya drew a number line and put “0” on the left hand 
end, “1” in the middle, and “2” on the right hand end.. Second, she re-expressed 2/3 + 3/4 first 
as 4/6 + 6/8 and then as 8/12 + 12/16. Thus, she doubled numerators and denominators to gener-
ate correct equivalent fractions but did not make progress toward common denominators. 
When asked to use the denominator of 12, the students generated 8/12 and 9/12 quickly. Sonya 
put 12 tick marks from left to right between 0 and 1, and Jenny did the same between 1 and 2. 
Thus, the students made the common error of placing one too many tick marks in each unit 
interval, indicating they were counting the tick marks rather than attending to the length. 
Sonya proceeded to label the tick marks, resulting in a number line that showed 12/12 and 1 in 
two separate locations. (Sonya’s original 1 is the longer tick mark labeled 13/12 in figure 18.2a.) 
Third, the students drew arrows to represent the sum, although did so incorrectly.

Fig. 18.2. (a) Sonya’s number line when bench-
marks are estimated locations; (b) Sonya’s num-
ber line when benchmarks are exact locations

When the interviewer asked about the locations of 1 and 12/12, Sonya explained that 12/12 
and 1 were the same because they were equal. The interviewer asked, “Does it make a differ-
ence if you have two different places where you’ve marked the same thing?” Sonya replied, 
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“No. Because both of them equals 1” and explained, “When you draw your number line you 
have to put 12 of them in each space because that is what the denominator is.”

The interviewer then showed lesson video in which Ms. Reese demonstrated 1/4 + 1/8 on 
the number line (see fig. 18.1). Sonya noticed that Ms. Reese collocated 1 and 8/8. (During the 
lesson excerpt Ms. Reese asked where 8 eighths was on the number line, and several students 
commented, “On the 1.”) When the interviewer returned the students’ attention to their work 
and asked again about 12/12 and 1 being in two different places, Sonya explained:

Sonya:	 You are trying, on the 0, 1, and 2 [pointed to “0,” “1,” and “2”], you are trying to 
put where 8 over 12 and 9 over 12, you are trying to guess where, like a estimate, 
you trying to put where it goes here, and then when I drew these [pointed to 12ths 
tick marks], when she drew these, you are like telling, you know where 12 over 12 
is at. [emphasis added]

Sonya’s explanation was strikingly similar to those cases where Ms. Reese adjusted the loca-
tion of the 1, but instead of erasing the original 1, the students now had two 1’s. Although at 
earlier moments during her interviews Sonya placed equivalent fractions at the same location 
and connected fractions of the form n/n with the whole unit, we saw no signs that separate 
locations for the 1 and 12/12 created a contradiction for her here.

From the interviews, we learned not only that Ms. Reese’s adjustment of the 1 unin-
tentionally undermined Sonya’s success, but also that Sonya could be considerably more 
successful with a seemingly small adjustment in instruction. When the interviewer asked the 
students to draw a new number line thinking of the original location of the 1 as exact, not 
an estimate, Sonya looked much more proficient. She drew a new number line with “0,” “1,” 
and “2” labels, added a “12/12” label under the “1,” added a tick mark for 6/12, and explained 
that “half of 12 is 6” (fig. 18.2b). She then located 3/12 by partitioning the interval between 0 
and 6/12 in half and similarly located 9/12 by partitioning the interval between 6/12 and 12/12 in 
half. Sonya continued to fill in additional tick marks, explaining that she could add two tick 
marks within each fourth to locate “7, and then 8, and then 9, and then 10, 11.” Here her work 
indicated that she was focused on partitioning the fixed length from 0 to 1 into equal pieces. 
In addition, she accomplished her partition in stages: She first partitioned the length from 
0 to 1 in half to locate 6/12, then partitioned each half in half to locate 3/12 and 9/12, and then 
further partitioned the resulting fourths. 

A central question that Sonya’s difficulties raise is, What can teachers do to strengthen stu-
dents’ understanding and use of number line representations for fractions and fraction ad-
dition? We present three recommendations. The first two recommendations are tied directly 
to the case of Ms. Reese, Sonya, and Jenny and may be more familiar to teachers than the 
last. The third recommendation reflects broader considerations when using number lines to 
support instruction in fractions. 

The first recommendation is not to change the size of the whole (i.e., the 1) after it has 
been established on the number line. Like Sonya, many students have an emerging under-
standing that the whole should not be changed when solving fraction problems. Small ac-
tions that seem inconsequential to teachers can throw off students unintentionally. Students 
who had a strong understanding that the whole had to remain fixed in fraction addition 
problems did not misinterpret Ms. Reese when she adjusted the location of the 1. Sonya, 
however, needed more support than other students to maintain a fixed whole when working 
with a number line. In particular, she benefited from explicit instruction that the location of 
1 should not be changed during the solution of a problem. 

Discussion
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A second recommendation is to have explicit discussions with students about partition-
ing intervals into equal-length subintervals because how to partition lengths on number lines 
is not self-evident to students, especially when they focus on counting tick marks instead of 
spaces. The case of Ms. Reese and Sonya demonstrates that how teachers produce number 
line representations can have significant consequences for students’ attention to partitioning 
a fixed interval. Although Ms. Reese focused on equal-sized sublengths, Sonya interpreted 
left to right markings as a count of the number of tick marks (e.g., 12/12 meant create 12 tick 
marks from left to right, not 12 equal-sized pieces). One instructional practice that can help 
students establish a fixed interval partitioned into sublengths is to have them partition a fixed 
whole on the number line and adjust the size of the pieces they create within that fixed length, 
rather than adjusting the whole itself. This activity focuses students’ attention on the fact 
that the size of the whole should not change, and that the goal of the activity is to partition 
and make equal-sized pieces. 

A third recommendation that builds on the first two, and that may be less familiar to 
teachers, is to provide students with experiences of partitioning a partition. By partitioning 
a partition, we mean first partitioning a fixed interval into a certain number of equal-sized 
pieces, and then partitioning each of those equal-sized pieces into still smaller equal-sized 
pieces. This recommendation supports the first recommendation discussed above, especially 
when partitioning an interval into a larger number of subintervals. Understandably, Ms. Re-
ese had trouble “eyeballing” tenth-sized pieces when partitioning from left to right. An easier 
way to partition would have been to partition a fixed whole into halves first and then to par-
tition each of those halves into five equal-sized pieces. Notice that such an approach might 
well have made sense to a struggling student like Sonya: She demonstrated some capacity to 
partition in stages when she first partitioned a whole into two equal-sized pieces, labeling her 
tick mark 6/12, then partitioned each half into two more equal-sized pieces, labeling her new 
tick marks 3/12 and 9/12, and finally partitioning the resulting fourths (see figure 18.2b). Such 
activity can focus students’ attention on equal-sized sublengths and provides opportunities 
to think about multiplication factors. To illustrate, Sonya’s method creates opportunities to 
talk about two groups, each with six equal-sized pieces that create the whole unit (2 × 6 = 12), 
and four groups, each with three equal-sized pieces that create the whole unit (4 × 3 = 12). 
Connections between multiplication and partitioning can support understandings of equiva-
lent factions, as discussed next. 

By partitioning a partition students can use number lines to establish equivalent frac-
tions (see Steffe, 2003; Steffe & Olive, 2010). To illustrate, Sonya created 6/12 by partitioning 
the unit interval into two equal parts, and a discussion about equivalent fractions could fol-
low—1/2 and 6/12 name the same length, 1/4 and 3/12 name the same length, and 3/4 and 9/12 name 
the same length. In particular, students could begin by partitioning the whole into two halves 
and then continue by subdividing each of the halves in half again, creating four equal-sized 
pieces that make up the whole, or 1/4. Using the fact that 4 × 3 = 12, students could partition 
each of the fourths into three equal-sized pieces. Then three of the twelfths are the same 
length as one of the fourths. This kind of activity and discussion can help students (a) under-
stand how whole-number multiplication is involved in creating equivalent fractions, (b) use 
fixed lengths as the basis for understanding numerical notations for equivalent fractions, and 
(c) connect symbolic and length-based representations of number. Such understandings can
form the foundation for studying subsequent topics, like multiplication with fractions, which
is different than multiplication with whole numbers because it is based on equal-sized pieces
that are smaller than the original whole.

The study reported in this chapter, and our recommendations that follow from it, il-
lustrate subtle nuances that are important for successful instruction with visual representa-
tions. That is, how teachers’ create and use such representations in classrooms can have sig-
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nificant consequences for the way that students interpret and understand instruction. These 
consequences can either help or hinder students’ future understanding. While Ms. Reese was 
certainly aware of some of the issues we raised in this paper (e.g., she focused her instruction 
on creating equal subintervals, not on counting tick marks), she may not have been aware 
how entrenched these interpretations can be for some students (e.g., counting tick marks). 
Therefore, it is essential for teachers to engage in instructional practices that provide oppor-
tunities for such students to continue working on these issues as they develop a more solid 
understanding of fractions and fraction addition. Careful attention to such issues, we think, 
is an important part of implementing the CCSSM successfully.
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