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Teaching and Learning Two-Digit
Multiplication: Coordinating Analyses
of Classroom Practices and Individual

Student Learning

Andrew lzsik
The University of Georgia

This article coordinates an analysis of 2-digit multiplication instruction in 1 U.S.
4th-grade classroom with an analysis of learning accomplished by a cross-section of
students from the same classroom. In particular, the article compares how
taken-as-shared classroom mathematical practices and individual students used fea-
tures of rectangular area representations for accomplishing similar problem-solving
goals. The analysis demonstrates (a) how classroom practices com erged on methods
that coordinated magnitudes of partial products, expanded forms for factors, and the
distributive property and (b) that some students accomplished similar coordinations by
the end of the unit, whereas others still struggled to connect representational features
with the goal of determining areas. The article provides a model for further studies that
coordinate analyses of classroom interactions with analyses of individual student
learning and suggests the detail with such analyses need to be conducted. if they are to

provide insight into processes of teaching and learning with multiple representations.

This article uses connections between two-digit multiplication and rectangular
area as a context in which to address two broad questions central to research in
mathematics education. First, how can students develop conceptual and procedural
understandings of core topics? Second, what relationships exist between class-
room interactions and individual student learning?

Multidigit multiplication is an important, though understudied, area of research
for two reasons. First, conceptual understanding rests on two mathematical
coordinations required for extending multiplication from single- to multidigit
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numbers. The first coordination is between magnitudes of factors and magnitudes
of products. Students must learn when magnitudes of factors and products are the
same (e.g.. 2 x 3 =6), and when they are different (e.g.. 2 x 30 =60 and 20 x 30 =
600). The second coordination is between expanded forms for factors (e.g., 20 + 8)
and the distributive property. Efficient multiplication methods that generalize to
arbitrary numbers of digits rely on multiplying each term in the expanded form for
one factor by all terms in the expanded form for the second. whether or not ex-
panded forms are made explicit. If students develop initial understandings of the
distributive property in the context of whole-number multiplication, they will be
better prepared to apply the property in other domains such as fractions and alge-
bra. The instructional materials at the center of this study used areas of rectangles
and an expanded numeric method to support these two coordinations.

The second reason that research on multidigit multiplication is important is that
U.S. students have performed poorly on multidigit multiplication items in interna-
tional studies. Stigler, Lee, and Stevenson (1990) reported that only 54% of U.S.
fifth-grade students in “traditional” courses could solve 45 x 26 correctly. and
Mullis et al. (1997) reported that only 46% of U.S. fourth-grade students could
correctly answer a multiple choice item that asked how much more 25 x 18 is than
24 x 18 (percentage correct for fourth-grade students from other countries in-
cluded Hong Kong, 63%. Korea. 80%. and Singapore, 73%). The classroom ana-
lyzed in this article is of interest not only because of the instructional materials, but
also because the U.S. fourth-grade students in this study outperformed the U.S.
fifth-grade students in the Stigler et al. (1990) study: 80% solved 45 x 26 correctly
on the end-of-unit test.

In the next section, this article reviews results from research on multiplica-
tion, the use of external representations in problem solving, and classroom
microcultures on which this study builds. The article then describes the multipli-
cation materials and uses them to illustrate the theoretical perspective on repre-
sentations and problem solving that is used to coordinate an analysis of
whole-class solutions with an analysis of individual student strategies. To under-
stand students’ opportunities to learn with the instructional materials, the article
analyzes the evolution of taken-as-shared problem-solving strategies that arose
through whole-class discussions over the course of the entire two-digit multipli-
cation unit. Then, to understand those aspects of taken-as-shared strategies that
students incorporated into their own problem solving, the article analyzes strate-
gies that a cross-section of students used to solve similar problems during
end-of-unit interviews. Both analyses focus on ways that representational fea-
tures were used to accomplish problem-solving goals. Taken together, the analy-
ses Jead to results about opportunities and challenges when teaching and learn-
ing conceptual and procedural aspects of multidigit multiplication with area
representations, and provides a model for future studies that coordinate analyses
of classroom interactions with analyses of individual student learning. Such co-
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ordinated analyses at the level of strategies are still rare (see Lobato, Ellis, &
Muiioz, 2003, for a related example).

BACKGROUND

Classifications of situations that can be modeled by multiplication have consis-
tently included rectangular areas (e.g.. Greer, 1992; Schmidt & Weiser, 1995:
Schwartz. 1988; Vergnaud, 1983, 1988). Research on multiplication has used
rectangles to illustrate multiplication of fractions and the commutative property
(Greer, 1992) and to investigate preservice teachers’ quantitative reasoning (Si-
mon & Blume, 1994). To the best of my knowledge, however, research has not
examined the use of rectangular areas to develop students’ understanding of
multidigit multiplication. Moreover, just a few studies have examined students’
understandings of the distributive property. In addition to Lampert’s (1986,
1986b) work discussed in the following, Matz (1982) reported high-school and
college students’ difficulties with the distributive property when manipulating al-
gebraic expressions, and Weaver (1973) reported fourth- through seventh-grade
students’ difficulties on tasks such as (3 x 8) + (9 x 8) = _ x _ and "3 sets of 8
and 9 sets of 8 are _ sets of _."

Classroom Studies of Multiplication

Research on multiplication contains several classroom-based studies (Confrey &
Scarano, 1995; Lampert, 1986a, 1986b; Mechmandarov, 1987, as discussed by
Nesher. 1988; Scarano & Confrey. 1996; Treffers, 1987). Of these, only Lampert
(1986a, 1986bh) and Treffers (1987) focused on multidigit multiplication. Lampert
(19864, 1986b) gave a detailed description of her instruction in one fourth-grade
classroom that used coins, drawings of situations described in word problems, and
nuineric methods that separated partial products from multidigit addition. Al-
though Lampert used drawings of situations to help students develop intuitive and
conerete understandings of the distributive property, she did not include rectangu-
lar area situations and did not investigate how individual students understood and
used the representations that she discussed with her class. Treffers (1987) de-
scribed an instructional approach for third grade based on progressive schematiza-
tion in which students solved multidigit multiplication problems using numeric
methods that began with and then abbreviated repeated addition. Treffers did not
describe possible connections between numeric methods and drawn representa-
tions and did not analyze classroom interactions between teacher and student. In
contrast to the work of Lampert (19864, 1986b) and of Treffers (1987), this study
analyzes not only classroom instruction but also understanding that individual stu-
dents used 1o solve multidigit multiplication at the end of that instruction.
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Rectangular Areas and Arrays

Although some research has suggested that students connect multiplication to ar-
eas of rectangles by reciting, but not understanding, the length times width formula
(De Corte, Verschaffel, & Van Coillie, 1988; Nesher, 1992 Peled & Nesher, 1988:
Simon & Blume, 1994), these difficulties may be most acute when students try to
understand relationships between lengths and areas as measurements. Simon and
Blume argued that most learners must use rectangular areas, understood as arrays
of unit squares, as the basis for understanding the transformation through multipli-
cation of length into area measurements. Other research has suggested that under-
standing rectangular areas as arrays of unit squares can be accessible to upper ele-
mentary students. Peled and Nesher found that fifth- and sixth-grade students had
good understandings of the constraints that equal-groups problems must satisfy,
including situations where discrete objects are arranged in arrays. Students knew
that rows and columns in arrays must have the same number of elements, but they
could not connect rectangular areas to arrays or repeated addition when unit
squares were not rendered. Reynolds and Wheatley (1996) found evidence that
fourth-grade students understood rectangular coverings in terms of rows of unit
squares that form composite units. In subsequent research, Outhred and
Mitchelmore (2000) examined how first- through fourth-grade students covered
rectangles by drawing unit squares of a size specified in each of three tasks. Al-
though none of the students had been taught area measurement, virtually all
fourth-grade students generated correct coverings with equal numbers of unit
squares in each row and column. Battista, Clements, Arnoff, Battista, and Borrow
(1998) suggested, however, that array structures are less accessible to early ele-
mentary students. These results suggest that fourth-grade students, like those in
this study, may be able to use understandings of arrays to develop understandings
of multidigit multiplication.

Counting and Repeated Addition as a Basis
for Whole-Number Multiplication

Determining areas of rectangles understood as numbers of unit squares may be ac-
cessible to students because the array structure can support a range of strategies.
Some researchers (Anghileri, 1989; Kouba, 1989; Mulligan & Mitchelmore, 1997)
have analyzed how elementary-school students, typically in firsi- through
third-grade, used blocks and other manipulatives to solve single-digit multiplication
problems about equal groups situations using increasingly efficient counting strate-
gies that led to repeated addition and culminated in recalled multiplication facts. Al-
though whole-number multiplication is often introduced as repeated addition, there
has been debate among researchers about the psychological relationshi p between
the two operations. On one hand, Fischbein, Deri, Nello, and Marino (1985) argued
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that primitive models for each arithmetic operation mediate students’ selection of
operations when solving problems, and that repeated addition is the primitive model
for multiplication. Supporting evidence came from Bell, Fischbein, and Greer
(1984) who found that 12-and 13-year olds performed better on word problem tasks
when the multiplier was a whole number, so that multiplication could be thought of
as repeated addition. On the other hand, Bell, Greer, Grimison, and Mangan (1989),
Nesher (1988, 1992), and Peled and Nesher (1988) questioned Fischbein et al.’s po-
sition, arguing that students’ experiences with language and school affect connec-
tions they make between multiplication and addition. Moreover, several researchers
(e.g.,Clark & Kamii. 1996; Confrey, 1994; Confrey & Smith, 1994, 1995; Schwartz,
1988; Steffe, 1988, 1994; Vergnaud, 1983, 1988) argued that different psychological
operations and types of quantities are involved in multiplicative and additive think-
ing. and Stefte (1988, 1994) has traced the development of psychological operations
for multiplication out of children’s counting schemes. The range of strategies that ar-
rays afford for determining rectangular areas, some based on additive thinking and
some on multiplicative thinking, meant that even if students in this study had notde-
veloped multiplicative reasoning fully, they could still develop numeric methods
that coordinate (a) magnitudes of factors and products and (b) expanded forms for
factors and the distributive property.

External Representations and Problem Solving

Theoretical research on external representations has identified psychological pro-
cesses for constructing and interpreting representations—including encoding, read-
ing. syntactic elaboration, and semantic elaboration (Kaput, 1991)—and further psy-
chological processes for using multiple representations—including translation
(Janvier, 1987; Lesh, Post, & Behr. 1987). Some empirical research, particularly in the
functions and algebra literature. has focused on students’ evolving use of representa-
tional features for accomplishing problem-solving goals (e.g.. lzsdk, 2000, in press;
Lobato et al, 2003; Lobato & Siebert, 2002: Monk & Nemirovsky, 1994;
Moschkovich, 1998; Nemirovsky, 1994; Schoenfeld. Smith, & Arcavi, 1993). These
studies have documented cases in which understanding how 1o use y-intercepts, slopes
of linear graphs and equations, and other representational features for solving prob-
lems has been a significant accomplishment for students. Such research has examined
connections between representations and problem solving at a finer grain-size than
studies within the multiplication literature and motivates the detail with which this
study analyzes whole-class solutions and individual student strategies.

Classroom Microcultures and Representational Practices

Recent classroom research has examined how taken-as-shared interpretations and
uses of inscriptions can be established in mathematics classrooms. Cobb and col-
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leagues (e.g., Bowers, Cobb, & McClain, 1999: Cobb, 1999; Cobb, Stephan,
McClain, & Gravemeijer, 2001; McClain & Cobb, 2001) developed an emergent
perspective that coordinates analyses of classroom microcultures at the social and
individual levels and thatemphasizes reflexive relationships between the learning of
classroom communities and that of individuals. These researchers have character-
ized the learning of classroom communities in terms of social norms,
sociomathematical norms, and classroom mathematical practices. Social norms in-
clude explaining and justifying in any domain, sociomathematical norms include
what count as different mathematical solutions, and classroom mathematical prac-
tices are taken-as-shared ways of reasoning and arguing about particularmathemati-
cal ideas. McClain and Cobb analyzed emerging sociomathematical norms in one
classroom, and Bowers et al., Cobb, and Cobb et al. analyzed emerging classroom
mathematical practices in other classrooms. Practices become taken-as-shared
when they are beyond justification (Bowers et al., 1999; Cobb et al., 2001) and can
include uses of representations (see Cobb, 1999, p. 28). On balance, these research-
ers have focused theiranalyses more closely on the learning of classroom communi-
ties than on the learning of individuals, which they characterize in terms of beliefs
and understandings that are psychological correlates of norms and practices.

In related work, Hall and Rubin (1998) analyzed the reflexive development of
classroom practices and individual students’ understandings for representing rates
over four lessons. Although Sfard (2000) did not emphasize mathematical prac-
tices in her analysis of classroom discourse, her delineation of pronounced, at-
tended, and intended foci can be understood as an analysis of salient features of
representations and situations becoming taken-as-shared within a single lesson.
Lobato et al. (2003) introduced the construct of focusing phenomena, which are
observable features of the classroom environment that direct students” attention
and that emerge through coconstructed mathemalical language, features of curric-
ular materials, and uses of artifacts.

This study extends past research (a) by examining an approach to two-digit
multiplication based on areas of rectangles understood as arrays of unit squares, a
context that past research suggests can be accessible to fourth-grade students, (b)
by extending to research on multiplication a fine-grained perspective on represen-
tations and problem solving that has been more prevalent in research on algebra,
and (¢) by coordinating an analysis of evolving classroom practices over the course
of an entire instructional unit with an analysis of student problem solving at the end
of the unit. The classroom teacher in this study did not focus on the same norms for
justifying solutions as did teachers at the center of previous studies that have used
the emergent perspective. In turn, this led (o possibly different standards for class-
room mathematical practices becoming taken-as-shared. The contrast will lead to
hypotheses discussed at the end of the article, and to be pursued in future research,
about relationships between norms, how practices emerge. and consequences for
individual students’ learning.
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REPRESENTATIONS AND PROBLEM SOLVING
IN THE CHILDREN'S MATH WORLDS TWO-DIGIT
MULTIPLICATION UNIT

This study was conducted in the context of the Children’s Math Worlds project
(CMW), an ongoing project that develops instructional materials for elementary
school mathematics and conducts research on teaching and learning as teachers
use those materials in their classrooms. A main ohjective of CMW is to make the
goals of the Principles and Standards for School Mathematics (National Council
of Teachers of Mathematics, 2000) accessible to urban and suburban students and
teachers. Relevant to this study are standards about number and operations, geom-
etry, representation, measurement, and problem solving.

The CMW two-digit multiplication unit builds on a preceding CMW unit that
develops connections among single-digit multiplication, equal groups, and areas
of rectangles understood as arrays of unit squares. The single-digit materials in-
clude rectangles with drawn unit squares and ask, “What is the total number?” To
take one example, students can calculate the area of a three-by-five rectangle by
counting 15 individual unit squares, adding three groups of five unit squares, add-
ing five groups of three unit squares, or recalling 3 x 5 = 15. The two-digit multipli-
cation unit builds on connections developed in the single-digit unit, and students
discover that effective single-digit strategies, like those just described, become in-
efficient with larger factors.

The two-digit multiplication unit scaffolds the development of more efficient
strategies with three area representations and a numeric method that break apart
factors and products into smaller, easier-to-handle pieces (see Figure 1). Unir
squares representations show all unit squares and are a continuation of area repre-
sentations used in the single-digit unit. The two-digit unit introduces 100s/10s/1s
and quadrants representations. The 100s/10s/1s representations break apart
lengths into individual tens and ones and areas into groups of 100, 10, and individ-
val unit squares. Groups that are 10 unit squares wide and long are called /00
squares. The 100s/10s/1s representations help students determine magnitudes of
partial products, the first coordination discussed previously.

Unit squares and 100s/10s/1s representations are drawn o the same scale, but
quadrants representations are not. Quadrants representations are intended as
sketches to be used with numbers of any size and scaffold connections between ex-
panded forms and the distributive property, the second coordination discussed pre-
viously. Finally, each line of the expanded algorithm corresponds to one region in
quadrants representations. The expanded algorithm generalizes to any number of
digits and can collapse to the traditional U.S. method, but represents partial prod-
ucts and multidigit addition more explicitly. As the unit progresses to larger fac-
tors, first unit squares and then 100s/10s/1s representations are dropped both for
reasons of scale and to transition to numeric methods.




3t=30+Y
x 28=20+§
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FIGURE 1 The unit squares, 100s/10s/1s, quadrants, and expanded algorithm representa-
tions for 28 x 34, From “Exploring the use of new representations as a resource [or teacher
leaming,” by A. 1zsik and M. Sherin, 2003, School Science and Mathematics. 103 (1). p-20
Copyright 2003 by School Science and Mathematics Association, Reprinted with permission.

Other two-digit multiplication materials (e.g., Manfre, Moser. Lobato, & Mor-
row, 1992) have used area representations and numeric methods similar to the ex-
panded algorithm. The CMW materials are distinguished by the coordinated use of
all three area representations described previously and the expanded algorithm.,
The unit provides particular representations and a target computation method, but
also encourages teachers to elicit, discuss, and build on students’ problem-solving
strategies. The intent is for teachers to help students understand the area represen-
tations and master numeric methods that generalize to larger factors. !

Three observations about solving problems with the CMW materials are key to
my analysis of teaching and learning. First, teachers and students must have strate-
gies for accomplishing the following sequence of goals: (a) find groups of (in some
cases imaginary) unit squares in unit squares, 100s/10s/1s, and quadrants repre-
sentations; (b) determine areas of regions found in (a); and (¢) find final products
by adding areas found in (b). I coordinate analyses of whole-class solutions and in-

'Mental strategies—such as 4 x 17 is 4 x 10 plus 4% 7 and 40 + 28 = 68—are important and rely on
at least implicit use of the distributive property. Investigating student’s understanding of such strategies,
however, wis beyond the scope of the study,
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dividual student strategies by examining how one fourth-grade teacher and her stu-
dents accomplished these three goals during lessons and how students accom-
plished the same three goals during end-of-unit interviews.

Second, teachers and students must not enly connect features of each represen-
tation that correspond to the same factor or product but also understand how to use
particular features to accomplish a given goal. Figure 2 illustrates four different
features of unit squares representations that can be used to determine areas. Strat-
egy (a) relies on counting groups of 10 unit squares as in 10, 20, 30, 40.” whereas
strategies (h). (¢), and (d) rely on multiplying dimensions inscribed in three differ-
ent ways. The strategy shown in Figure 2b uses the number of unit line segments
along the top and side; the strategy shown in Figure 2c¢ uses the number of unit
squares. For the analyses that follow, T will take such strategies to be distinct be-
cause, as shading indicates, each relies on different representational features. Fo-
cusing on the different representational features that can be used to accomplish a
given goal highlights how the same representation can be used to solve a problem
in more than one way. Moreover, as research summarized previously on the learn-
ing of algebra has suggested, and as analysis of student interviews later in this arti-
¢le will confirm, coordinating representational features with goals can be a signifi-
cant, though often underemphasized. aspect of student learning.

Third, as the CMW materials first drop unit squares and then 100s/10s/1s repre-
sentations, the remaining area representations contain fewer and fewer features on
which to build strategies. Thus, teachers and students who rely on unit squares for
initial strategies have to refine or replace those strategies as the lessons progress.

10 |0

(a) (b)
10 o

(c) (d)

FIGURE 2 Four strategies for determining the area of o 4-by- 10 rectangle using the unit
squares representation: (a) counting groups of 10 unit squares, (b) multiplying the number of
unit line segments along the top and side, (¢) multiplying the number of unit squares along the
top and side, and (d) multiplying the numeric labels.
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By including representations with fewer and fewer features, the instructional mate-
rials can scaffold convergence toward multiplication strategies that coordinate
magnitudes of partial products, expanded forms for factors, and the distributive
property.

When examining classroom lessons, I analyze strategies, like those shown in
Figure 2. as taken-as-shared means of using representational features for accom-
plishing problem-solving goals. Such practices emerge as students and their
teacher contribute to solutions. The analysis illuminates reflexive relationships be-
tween classroom practices and individual activity consistent with the emergent
perspective discussed previously, and the article will close with questions for fu-
ture research within this perspective. When analyzing student interyiews, lanalyze
strategies as knowledge that emerges as students make sense of taken-as-shared
strategies or construct alternative strategies for accomplishing goals. Of course,
students’ existing understandings influence which features they find salient: stu-
dents might attend to shaded features in Figure 2b or 2d either if they understood
quantitative relationships between dimensions and area, or if they used the / x w =
a formula by rote.

WHOLE-CLASS SOLUTIONS TO TWO-DIGIT
MULTIPLICATION PROBLEMS

This section describes Mrs. Tate’s? mathematics lessons, explains the classroom
data and methods used to analyze those data, and presents an analysis of prob-
lem-solving strategies as practices constructed through whole-class discussions,
The analysis will lead to the first two results of the article and will set the stage for
subsequent analysis of student problem-solving strategies.

Mrs. Tate's Mathematics Lessons

The Children’s Math Worlds project collaborated with Mrs. Tate over the course of
the 1999-2000 school year. She was a fourth-year teacher in a midwestern subur-
ban district with a heterogeneous population. Approximately one quarter of her
students were main-streamed with learning disabilities, and about the same pro-
portion were bilingual. Mrs. Tate was energetic and volunteered to pilot CMW ma-
terials after hearing about the project from third-grade teachers at her school. Mrs.
Tate taught the CMW single-digit unit before she taught the two-digit multiplica-
tion unit. When teaching multidigit multiplication in previous years, Mrs. Tate had
taught the sequence of steps in the traditional algorithm. The expanded algorithm

“All names are pseudonyms
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and using area representations to help students understand two-digit multiplication
were new for her.

Mrs. Tate executed engaging, well-managed mathematics lessons. Students
knew that they were to stay focused and participate. They did so by listening,
watching, suggesting strategies. asking questions, and working with their class-
mates in groups when asked to do so. Mrs, Tate incorporated humor and dealt with
interruptions in ways that minimized disruption.

Mrs, Tate usually began lessons with 15- to 20-min activities that she called
“Do Nows.” These activities were not written into the CMW instructional materi-
als, but were one of Mrs. Tate’s established classroom routines. A typical Do Now
consisted ol a single page with mathematical puzzles, exercises that reviewed a
previously studied topic, or a warm-up for the day’s lesson on two-digit multiplica-
tion. Mrs. Tate passed out the day’s Do Now 1o each student and then worked with
individuals and small groups. As the two-digit multiplication lessons progressed,
Mrs. Tate also used this time to work with students who needed extra help on
CMW homework.

Mrs. Tate spent the second half of her lessons leading whole-class solutions to
one or two two-digit multiplication problems. Mrs. Tate used transparencies on the
overhead projector that reproduced student pages from the CMW materials. The
class discussed connections among the representations and strategies that either
Mrs. Tate or students proposed. Mrs. Tate asked frequent questions to monitor the
class’ understanding, answered students’ questions. and encouraged students to of-
fer strategies—sometimes at the projector. Periodically, she stopped class discus-
sions for a few minutes so that students could work on problems at their desks with
neighbors.’

Data and Methods For Analyzing
Whole-Class Solutions

I videotaped all 13 two-digit multiplication lessons, which were spread over a pe-
riod of 8 weeks broken up by state testing and practice for this testing,
Thanksgiving, and Christmas. Mrs. Tate and her students were accustomed to my
presence and the video equipment, because | had previously taped several lessons
from the single-digit multiplication unit. I taped the entire classroom and zoomed
in on the overhead frequently to capture what Mrs. Tate and her students wrote and
where they pointed as they explained strategies. Thus, with one camera I captured
in as much possible detail whole-class interactions and demonstrated strategies for
using area representations to solve two-digit multiplication problems.

31 use the word discussion to refer to talk that occurred during whole-class solutions. The extent to
which Mrs, Tate was adaptive to student contributions varied within and across lessons.
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[ analyzed solutions demonstrated by Mrs. Tate and her students over the en-
tire set of lessons, using a method similar to that described by Cobb and
Whitenack (1996) for handling large. longitudinal sets of videorecordings. This
approach is compatible with Glaser and Strauss’ (1967) constant comparative
method. In my first pass through the videotapes. I analyzed the goals that Mrs.
Tate and her students accomplished problem-by-problem. Mrs. Tate and her stu-
dents consistently found groups. determined areas. and found final prod-
ucts—the three goals identified previously—but they did not always articulate
these goals explicitly. I then formed initial categories for the representational
features that were used to accomplish each of the three. sometimes implicit,
goals. I used verbal references, hand gestures, and added inscriptions (e.g., shad-
ing, underlining, and circling) as evidence for the representational features to
which Mrs. Tate and her students attended. The videotapes captured verbal refer-
ences and added inscriptions consistently, but sometimes failed to capture rapid
hand gestures. In such cases, 1 noted alternative representational features (o
which Mrs. Tate or her students may have referred. I then refined my categories
by taking subsequent passes through the videotapes until the categories became
stable. A second researcher examined independently one early, one middle, and
one late solution (14 x 13, 25 x 63, and 75 x 23 in Table 1) and arrived at a con-
sistent analysis.

Table 1 summarizes the results of the analysis. and the following presentation
illustrates each category of strategy listed. Note that I could construct the catego-
ries in Table 1 by examining several solutions using a given combination of area
representations, because Mrs. Tate and her students solved 11 problems using
unit squares, 100s/10s1s, and quadrants representations; 5 problems using just
100s/10s1s and quadrants representations; and 6 problems using only quadrants
representations. Distilling strategies used (o solve 22 problems over 13 lessons
into one table required omission of details unique to particular solutions. How-
ever, when analyzing the end-of-unit student interviews (Results 3 and 4), 1 fill
in such details when they appeared to shape students’ problem solving.

Result 1

Taken-as-shared class strategies for finding groups and determining areas in
unit squares and 100s/10s/1s representations emerged as Mrs, Tate and her
students discussed several alternatives.

The class solution to 28 x 34 illustrates Result 1, and Figure 3 shows the instruc-
tional materials for this problem. Mrs. Tate and her students had already solved 10
problems in which factors were between | and 19. The problem 28 x 34 was the
firstin which factors were greater than 20 and the last for which materials included




Class Strategies for Finding Groups, Determining Areas,

TABLE 1

and Finding Final Products

{Area Rr‘p\'j
Problems

Find Groups

Determine Areays

Find Final
FProducts

(U H.Q¥®
105 130
14 x 13
18x 16
17 x 16
13x 17
12x 18
18 x 13
10x 16
4x17
9x I8
28 x 34

(-H.Q
27 %23
36 x 28
25x 63
66 x 48
33x47

(=—Q)
62x47
75x23
12x 48
52x36
15x49
99 x 28

Counted 10 unit
squares across and
down

Added 10+ |s labels

Drew lines from plus
signs

Broke factors into
single 10s and 1s
directly

Drew lines from plus
signs

Wrote factory in
expanded form

Counted arcas by 105

Stated 10 x 10 =100

Counted areas by 10s

Counted areas by 10s

Counted areas by rows

Counted unit squares across and
down and multiplied

Counted 100 squares

Summed 10s in labels!

Counted perimeter squares by 10s
Summed 105 in labels

Pointed to 15 in labels

Counted pénmetér squares by 10s
Summed 10s in labels

Pointed to s in labels

Pointed 1o Is in labels

Pointed to 10s in labels
Pointed to 108 and 15 in labels
Paointed to 10s and 1sin labels
Pointed to 1s in labels

Copied
partial
products 1o
complete
expanded
algorithm®

Copied
partial
products o
complete
expanded
algorithm

Copied
partial
products 1o
complete
expanded
algorithm

AU = unit squares, H = 100s/10s/1s, and Q = quadrants representations. "The first factor was repre-
sented vertically, the second horizontally. “TT = tens x tens (top left quadrant), TO = tens x ones (top
right quadrant), OT = ones x tens (bottom left quadrant), OO = ones x ones (bottom right quadrant).
dSee Figure 2a for an example. “Throughout the two-digit multiplication unit, Mrs. Tate and her stu-
dents used quadrants representations to record partial products, which they then used to complete the
expanded algorithm. They did not explicitly discuss quadrants as representations of areas in unit
squares and 100s/10s/1s representations. The CMW materials did not emphasize sufficiently thatquad-
rants representations were to be understood as sketches of unit squares and 100s/10s/1s representations,
"The remaining descriptions in the column “Determine Areas” are of strategies for tinding dimensions,
which were then multiplied.
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FIGURE 3 Instructional materials for 28 x 34,

a unit squares representation. Thus, analysis of this solution will illustrate the en-
tries for the first group of problems in Table 1 (10 % 13 through 28 x 34) and many
of the entries for the second group (27 % 23 through 33 x 47), Mrs. Tate focused the
lesson on finding groups of 100, 10, and individual unit squares in the unit squares
representation, determining areas of the resulting regions, recording calculations
in the quadrants representation, and completing the expanded algorithm. She did
refer to the 100s/10s/1s representation provided in the materials, but only in pass-
ing. Perhaps this was because she constructed the 100s/10s/15s representation on
top of the unit squares representation.

The transition to larger factors and fewer area representations introduced two
mathematical issues into whole-class discussions. First, the class had to extend to
larger factors existing taken-as-shared strategies developed over previous solu-
tions for finding groups and determining areas. Such extensions were not straight
forward because the larger factors introduced multiple 100 squares, Thus, when
determining the area of the 20-by-30 region, students could take 100 squares, rows
of unit squares, or columns of unit squares as the repeated group. The class focused
on 100 squares at first, but coordinating expanded forms for factors and the distrib-
utive property required focusing instead on the dimensions of the 20-by-30 region.
As a result, Mrs. Tate had to redirect students’ attention toward representational
features that corresponded to these dimensions. Second, because the instructional
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materials were about to drop unit squares representations, the class had to develop
new strategies that relied on numeric labels. Mrs. Tate discussed connections be-
tween strategies that relied on unit squares and strategies that relied on numeric la-
bels, but subsequent analysis of interview data will show that not all students made
similar connections.

Goal 1: Find Groups

The unit squares representation. Mrs. Tate began the lesson by discuss-
ing the following problem included in the instructional materials:

A sandwich shop delivers to houses and businesses in a part of Chicago that
is 28 blocks long and 34 blocks wide. Over how many square blocks does the
sandwich shop deliver?

She explained that Chicago streets often form a grid and asked her class,
“What would the equation be that would solve this problem?” After several stu-
dents suggested 34 x 28, Mrs. Tate turned the class’ attention toward the unit
squares representation and asked, “What are you going to do with this problem?
This is a lot bigger than we are used to!” She gave students 5 min to work on the
problem using a 28-by-34 unit squares representation at their desks and, as she
circulated, asked questions like, “What are you breaking up your rectangle
into?”

Mrs. Tate reconvened the class and asked for ideas.* Rachel® suggested using 4
groups of 7 by 34, but could not figure out 7 x 34. Other students suggested groups
of 100s, 10s, and 1s, and one student began finding 100 squares on the overhead.
The student got stuck after finding one 100 square, and comments by other stu-
dents made clear that many were uncertain of the number of 100 squares in the
problem, Mrs. Tate reiterated students’ suggestions to use groups of 100s, 10s, and
I's and reminded the class that in a previous lesson they had broken apart 18 into 10
+ 8.

Mrs. Tate rephrased one student’s “three times 10™ suggestion, saying “three
[0s and a 47 She counted unit squares across the top row starting at the
left-hand end. She left a visible dot in each square as she counted out loud *1, 2,
3, 4,5, 6,7, 8,9, 10,7 wrote “+" over the border between the 10th and 11th
squares, and wrote “10” over the approximate center of the squares that she had

counted. Mrs. Tate repeated twice more the process of counting to 10, marking
squares with dots, and labeling the top of the rectangle. For the final group. she

4As the class solved the problem. Mrs. Tate responded to a complex set of mathematical issues
raised by students, and the original sandwich shop contexi dropped out of discussion.
51 use proper nouns for students who also participated in the end-of-umit interviews,
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left no dots as she counted squares and wrote “4." She then demonstrated the
analogous procedure down the left-hand edge of the unit squares representation.
Figure 4a shows Mrs. Tate’s unit squares representation at this point. Light gray
indicates initial representational features that Mrs. Tate used., and dark gray indi-
cates inscriptions that she added.

Mrs. Tate then told her students that the goal was an “efficient” solution. As
she said this, she drew vertical and horizontal lines that began by the plus signs
in her numeric labels and went across the unit squares representation. Although
Mrs. Tate did not discuss positions of plus signs explicitly, she apparently used
these to locate the lines that she drew. Figure 4b shows that Mrs. Tate’s lines di-
vided unit squares into 6 groups of 100, 2 groups of 40, 3 groups of 80, and |
group of 32.

Analysis. Al proposed strategies, including the 4 groups ol 7 by 34 strategy,
suggested that students attended to connections between multiplication and equal
groups but were unsure how to use such connections in problems with larger fac-
tors. Students who suggested finding groups of 100s, 10s, and 1s apparently were
trying to extend strategies that the class had used to solve 10 problems during pre-
vious lessons. The column labeled Find Groups in Table | shows that the ¢lass had
counted groups of 10 unit squares along perimeters of unit squares representations
("Counted 10 unit squares across and down™); had introduced numeric labels in
which plus signs marked the first 10 unit squares (“Added 10 + 1s labels™): and had
used those plus signs to locate and draw lines that created groups of 100, 10, and
individual unit squares (“Drew lines from plus signs™). The “three times ten™ sug-
gestion did not make explicit how to extend these strategies to larger factors, but
Mrs. Tate did so.
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FIGURE 4 Mrs. Tate found groups by (4) counting unit squares to construct additional nu-
meric labels and (h) using plus signs to locate vertical and horizontal lines.
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Goal 2: Determine Areas

The 20-by-30 region (Tens by Tens [TT]). To start the class determining
areas of regions in the unit squares representation, Mrs. Tate wrote 1007 in each
100 square and asked, “Why are these 100 squares where they are? Why are they
here? Why aren’t the 100 squares down here (she pointed to the 8-by-10 regions)?”
One student explained that there were “not enough” unit squares in the 8-by- 10 re-
gions. When Mrs. Tate asked if there was “a better way you could represent [the
six| hundreds.” another student proposed calculating 100 x 6. Mrs. Tate was out of
time for the day.

When the lesson resumed the next day, students continued to focus on the 100
squares in the 20-by-30 region as shown in Figure Sa. For example. Pete offered
the following strategy, “1 add up the 100s, and then 1 added the three 40s on the
side, and then [ add up the three 80s on the bottom. By “three 40s” Pete may have
meant the two 10-by-4 regions and the 8-by-4 region, but Mrs. Tate did not pursue
Pete’s error, Instead, she stayed focused on the 20-by-30 region and told students
that they were looking for “a more efficient equation.” She reminded students that
they had used 10s in factors for 18 x 13 to write “10 x 10 = 100" and underlined the
30 in*34" and the 20 in *“28." She then asked, “What kind of multiplication prob-
lem could you put together to give us 600, Rachel knows. using that 3 and 27" Ra-
chel suggested 30 x 20 but did not connect her approach to area representations.
Many other students raised their hands to show agreement. (Because Rachel was a
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FIGURE 5 Two strategies for determining the area of the 20-by-30 region: (a) Students
counted 100 squares (100 x 6) and (b) Mrs. Tate found dimensions innumeric labels (30 x 20).
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strong student, other students may have gone along without fully understanding
her suggestion.)

Having explicitly directed students™ attention toward the 20 and 30 in the nu-
meric labels, Mrs. Tate then introduced a second strategy for finding dimensions:
“Up here there are 10, 20, 30 (she pointed toward the unit squares representation,
but her precise gestures were off camera). Three tens equals how many?” The class
chorused. “30.” Mrs. Tate then asked how much two 10s made (her gestures toward
the unit squares representation were off camera again). She called on a student who
answered, “20.” Mrs. Tate wrote 30 x 20 = 600" in the corresponding region of the
quadrants representation, traced the perimeter of the 20-by-30 region in the unit
squares representation, and told students that 600 was “the area of this big, big
rectangle.” Figure 5b shows what Mrs. Tate's unit squares and quadrants represen-
tations looked like at this point. The figure does not show Mrs, Tate’s second strat-
egy because, without the hand gestures, I could not determine the precise represen-
tational features to which she referred.

Analysis. Mrs. Tate and her students discussed strategies for accomplishing a
new goal: determining areas of several 100 squares combined. Student comments.
such as there were “not enough™ unit squares for the 8-by-10 regions to be 100
squares, suggested that at least some students focused on areas of regions. Students
who proposed calculating 100 x 6 and adding six 100 squares may have extended
the strategy of counting repeated groups of 10 unit squares used in previous class
solutions (“Counted areas by 10s™ in Table 1 and Figure 2a), but this strategy did
not coordinate magnitudes of partial products, expanded forms for factors, and the
distributive property.

Mrs. Tate redirected students’ attention by offering two new strategies for find-
ing the dimensions of all six 100 squares combined. The first relied on the 30 and
20 in the “34” and “28" labels. Mrs. Tate had used a similar strategy only once be-
fore during the solution to 18 x 13. The second strategy involved counting by 10s
1o determine dimensions. Without Mrs. Tate's hand gestures, I could not tel]
whether her second strategy relied on her “10+ 10+ 10+ 4" and “10+ 10+ 8" la-
bels or on unit squares along the perimeter of the 20-by-30 region. In subsequent
solutions, Mrs. Tate used both features, sometimes summing 10s in numeric labels
(“Summed 10s in labels™ in Table 1) and sometimes counting groups of 10 imagi-
nary unit squares along perimeters (“Counted perimeter squares by 10s™ in Table
1). Figures 2a and 2c¢ show that the strategies “Counted areas by 10s™ and
“Counted perimeter squares by 10s™ relied on distinct. albeit overlapping, repre-
sentational features.

The 8-by-30 region (Ones by Tens [OT]). The class discussed strategies
for the 8-by-30 region next. One student suggested “30 times 8.” When Mrs. Tate
asked where the 30 came from, the student replied, “The three tens.” Mrs. Tate
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FIGURE 6 Two strategies for determining the area of the 8-by-30 region. (a). Using unit
squares along the perimeter (8 x 30). (b). Using three groups of 80 unit squares (80 x 3).

elaborated the explanation, saying “The three 10s are 30 (she pointed to each of the
8-by-10 regions). So you are having 30 x 8. OK. 10 across the top. 8 down (she
traced the top and left-hand edges of the left most 8-by-10 region).” Maria sug-
gested 80 x 3, apparently focusing on three groups of 80 unit squares. Mrs. Tate re-
sponded, “Truthfully you could do it either way, 30 x 8 or 80 x 3.” She explained
that she was going to do 30 x 8 because that was the way she had her calculations
on her paper.® Mrs. Tate wrote “8 x 30 in the corresponding region of the quad-
rants representation and pointed to each 8-by-10 region again as she counted, 10,
20, 30." Figure 6a shows representational features for the 8 x 30 strategy and what
Mrs. Tate's unit squares and quadrants representations looked like at this point,
Later she would add ** = 240" in the quadrants representation. Figure 6b shows rep-
resentational features for Maria’s 80 x 3 strategy.

Analysis. The “30times 8" proposal and subsequent “three tens™ explanation
suggested that some students focused on the dimensions of the three 8-by-10 re-
gions combined. The representational features to which these students attended
and the features that Mrs. Tate emphasized, however, may or may not have been
the same. Student comments did not specify features, but Mrs, Tate clearly counted

#The CMW project did not anticipate how hard it would be for students to focus on dimensions of
several regions comhined. Mrs. Tate's response to unexpected student ideas should be understood as a
natural part of using an instructional approach for the first time,
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unit squares along the perimeter (“Counted perimeter squares by 10s7). This strat-
egy resembled the second strategy that Mrs. Tate discussed before for the 20-by-30
region and emerged through contributions made by students and their teacher.
Maria’s alternative 80 x 3 proposal was similar to that made by Pete during the pre-
vious section (“T add up the three 80s on the bottom.”) and made clear that some
students focused on equal groups when determining areas, but not in ways that co-
ordinated dimensions of combined regions. When Mrs. Tate acknowledged that 80
% 3 would also work, she diverted her focus from dimensions momentarily. Per-
haps she wanted to validate other students’ reasonable alternative strategies.

When solving problems during previous lessons in which both factors were less
than 20, Mrs. Tate’s class had also discussed several different equal groups, but
then converged on groups of 100, 10, and individual unit squares. By the beginning
of the present lesson, students did not have to justify why they were focusing on
such groups. Thus, using groups of 100, 10, and individual unit squares had be-
come beyond justification. the criterion for taken-as-shared used by Bowers et al.
(1999) and by Cobb et al. (2001). The discussions that Mrs. Tate and her students
had about the 20-by-30 and 8-by-30 regions would form the basis for new
taken-as-shared strategies for problems with larger factors.

The 20-by-4 and 8-by-4 regions (Tens by Ones [TO] and Ones by Ones
[OQ]). Mrs. Tate sought fewer student suggestions for the 20-by-4 and 8-by-4
regions and may have been concerned with finishing the solution in the remaining
time for the day’s lesson. She reestablished her focus on dimensions by counting
unit squares along perimeters. She asked how many “little blocks™ were in the
20-by-4 region and pointed to each unit square across the top as she counted., 1, 2.
3, 4 going this way." She then asked “How many rows?" and pointed to each unit
square in the right-most column as she counted, 1,2, 3,4.5,6,7.8,9. 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20. What's 10 and 102" (Mrs. Tate may have intended
connections to the “Counted perimeter squares by 10s” strategy that the class had
constructed for the 8-by-30 region.) Several students said “20.” and Mrs. Tate
wrote 4 x 20 =" in the corresponding region of the quadrants representation. She
never completed this equation. Figure 7a shows what Mrs. Tate’s unit squares and
quadrants representations looked like at this point.

Finally, Mrs. Tate traced the perimeter of the 8-by-4 region in the unit squares
representation and counted unit squares along the top, leaving visible dots as she
went. “There are four blocks across the top of this rectangle. [ know this because
there is a 4 up here (she circled the 4 in her “10 + 10 + 10 + 47 label).” Mrs. Tate
then asked, “Four blocks times how many rows?” To answer this question, she cir-
cled the 8 in her “10 + 10 + 8" label and drew an arrow to the 8-by-4 region, as
shown in Figure 7b. She said. “There are 8 blocks going down on this column (she
traced the left-hand edge of the 8-by-30 region) so there must be 8 on this side (she
traced the right-hand edge of the 8-by-4 region).” Mrs. Tate concluded by writing
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FIGURE 7 (). Mrs. Tate counted unit squares to find dimensions of the 20-by-4 region. (b).
Mrs, Tate counted unit squares and pointed to labels to find dimensions of the 8-by-4 region.

*4 x 8 =32" in the corresponding region of the quadrants representation. Figure 7b
shows Mrs. Tate's unit squares and quadrants representations at this point.

Mrs. Tate accomplished the third goal. find final products. by copying partial
products from the quadrants representation to the expanded algorithm. She asked the
class, “"Now what do youdo with these numbers?” The class chorused. “Add 'em.”

Analysis. In addition to refocusing the class discussion on dimensions by
counting unit squares, Mrs. Tate also connected numeric labels to unit squares
when finding dimensions of the 8-by-4 region. The arrow that she drew explicitly
inscribed the connection between her “10 + 10 + 8" label and unit squares along
the vertical dimension of the 8-by-4 region. Such use of labels was similar to the
strategy she demonstrated when underlining the 20 and 30 and connected new
strategies that relied on numeric labels to previous strategies that relied on unit
squares. Table 1 shows that this “Pointed to Is in labels” strategy was continually
used in subsequent solutions.

Summary

In solving 28 x 34, Mrs. Tate’s class extended existing taken-as-shared strate-
gies for finding groups and determining areas to problems with larger factors.
The range of strategies afforded by unit squares and 100s/10s/1s representations
provided teaching and learning opportunities, because students who had con-
nected maltiplication, equal groups, and areas of rectangles to different degrees
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could discuss alternative strategies. The same range of strategies also created
teaching challenges, because some students extended existing taken-as-shared
strategies in ways that could coordinate magnitudes of partial products, ex-
panded forms for factors, and the distributive property, others did not (e.g.. 100
% 6 for the 20-by-30 region and 80 x 3 for the 8-by-30 region). Mrs. Tate di-
rected students’ attention toward dimensions of rectangles and connected new
methods for determining areas that relied on numeric labels to previously estah-
lished methods that relied on unit squares. Thus, under Mrs. Tate’s guidance.
student suggestions formed the basis for new class strategies that, in turn, would
hecome beyond justification, and hence taken-as-shared. This reflexive relation-
ship between learning of the classroom community and that of individuals is
consistent with the emergent perspective. Note that Bowers et al. (1999), Cobb
{1999), and Cobb et al. (2001) also have documented the emergence of class-
room mathematical practices over the course of a small number of classroom
discussions. Result 2 will show that in subsequent lessons class strategies con-
tinued to converge on those that coordinated magnitudes of partial products, ex-
panded forms for factors, and the distributive property. Result 4 from student in-
terviews discussed later in the article reveal further aspects of understanding area
representations that did not surface in whole-class discussions,

Result 2

Subsequent class strategies converged on those that coordinated magnitudes
of partial products, expanded forms for factors, and the distributive property.

The second and third groups of entries in Table | (starting with 27 x 23 and 62 x
47, respectively) summarize class strategies over the rest of Mrs. Tate’s two-digit
multiplication lessons. The second group of problems were those for which the
CMW materials provided only 100s/10s/1s and quadrants representations. The
third group was those for which students had to draw their own quadrants represen-
tations. The convergence of class strategies on those that coordinated magnitudes
of partial products. expanded forms for factors, and the distributive property was
consistent with the goals of the CMW two-digit multiplication unit. The following
summary of data and analysis that led to Result 2 will show that several key fea-
tures of the 28 x 34 solution were not isolated: New class strategies continued to
emerge through interactions during which Mrs. Tate solicited students’ ideas, di-
rected students” attention toward dimensions, and connected strategies that relied
on numeric labels to those that relied on unit squares.

As factors got larger, and the CMW materials first dropped unit squares and
then 100s/10s/1s representations, counting unit squares was no longer feasible for
finding groups. Mrs, Tate introduced the new strategy of breaking apart factors di-
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mcuyhnnsumsufﬂngclUxmulH.Hgmtﬁahowsankhm1hwhnﬁcapm1mc
factors 63 and 25 into 10+ 10+ 10+ 10+ 10+ 10+ 3 and 10 + 10 + 5 (“Broke fac-
tors into single 10s and 1s directly™ in Table 1). Then Mrs. Tate drew vertical and
horizontal lines from plus signs as she had done in previous solutions. In this one
solution. Mrs. Tate also left a visible trace of dots, shown in Figure 8, that she said
“symbolize[d] 1, 2. 3.4, 5, 6, 7, 8, 9. 10 little blocks.” This demonstration con-
lmcmdmcpmvmu5damxnawgyﬂwﬁnmnggnmp&uhmhrdmdonUMImwmtx
to the new strategy. which relied on numeric labels.

To determine the area of the 20-by-60 region, Mrs. Tate used single 10s in her
numeric labels to determine the area of each 100 square. She then summed the 10s
across and down to state the corresponding 20 x 60 multiplication problem
(“Summed 10s in labels™ in Table 1) and counted the 100 squares to determine the
total area of 1,200 unit squares (“Counted 100 squares™ in Table 1). In this way, she
bmunnmmHHMmum@gwnmnuwnmungmmmumMmemnmmthMmd%
of partial products, expanded forms for factors, and the distributive property. For
the 5-by-60 region, Mrs. Tate counted five imaginary unit squares down, summed
the six 10s across, and multiplied. For the 20-by-3 region, she pointed to the “3.”
summed the two 10s down. and multiplied. For the 5-by-3 region, she pointed to
the labels and multiplied. The class continued to find final products by copying
partial products from quadrants representations to the expanded algorithm and
adding.

The final problems in the CMW two-digit multiplication unit involved products
greater than 1.000. The materials provided factors only, and students had to sketch
their own quadrants representations. As Mrs. Tate circulated one day, she saw
Maria adding numeric labels to her quadrants representation by writing factors in
expundedfhrn1ucnmslhctnpund<hnvnlhclcﬂ-hand'dde(shnﬂarlulhcquadrunu
representation shown in Figure 1). Mrs. Tate had never added numeric labels to
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FIGURE 8 Mrs. Tate's 100s/10s/1% representation for 25 times 63,
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quadrants representations. but now showed Miria's work to the whole class and
used similar labels (*Wrote factors in expanded form™ in Table 1) to determine par-
tial products (“Pointed to 10s in labels,” “Pointed to 10s and 1s in labels.” and
“Pointed to 1s in labels™ in Table 1). Working subsequent problems at their desks,
most students added similar labels, determined areas by multiplying 10s and 1s in
these labels, and found final products by copying and adding partial products to
complete the expanded algorithm, Thus, contributions made by Mrs. Tate and her
students led to class strategies that coordinated magnitudes of partial products, ex-
panded forms for factors. and the distributive property.

Summary

Table 1 summarizes the evolution of taken-as-shared class strategies for find-
ing groups, determining areas, and finding final products. Mrs. Tate and her stu-
dents discussed a range of strategies for using unit squares representations, but
this range decreased as the CMW materials dropped unit squares and
100s/10s/1s representations. Analyses of solutions to 28 x 34 and 25 x 63 show
how Mrs. Tate continued 1o build on students’ suggestions and lo connect new
strategies that relied on numeric labels 1o old strategies that relied on unit
squares. Ultimately, class discussions converged on essentially one multiplica-
tion strategy that coordinated magnitudes of partial products, expanded forms
for factors, and the distributive property. As a consequence of this convergence,
alternative choices for equal groups, like those that students suggested during the
solution to 28 x 34, faded from class discussions.

STUDENT SOLUTIONS TO TWO-DIGIT
MULTIPLICATION PROBLEMS

Classroom data discussed previously evidenced a range of student strategies for
accomplishing problem-solving goals, but the extent to which Mrs. Tate’s students
appropriated taken-as-shared class strategies, or used alternative strategies, re-
mains an important question. To gain access to students’ strategies for finding
groups, determining areas, and finding final products, I conducted end-of-unit in-
terviews with pairs of Mrs. Tate's students. This section of the article describes the
interview data, explains the methods used to analyze those data, and presents an
analysis of student strategies. The analysis will lead to the third and fourth main re-
sults of the article and will reveal further challenges when learning two-digit multi-
plication with the CMW materials that did not surface in whole-class discussions.
These challenges have implications discussed at the end of the article for other in-
structional approaches that rely on representations with multiple features.
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Data and Methods for Analyzing
Student Strategies

To gain access to student solutions to two-digit multiplication problems, I inter-
viewed 6 pairs of students, or about half of Mrs. Tate's class. Mrs. Tate helped
identify pairs of low-, mid-, and high-achieving students who had experience
working together. Four pairs consisted of students who were mid- (o
high-achieving. Students in one of the two low-achieving pairs received services
for learning disabilities in mathematics. Two pairs were boys and 4 were girls. |
used pairs of students to get more detailed access to their thinking as they com-
pared each other’s work.

The 45- to 50-min semistructured interviews (Bernard, 1994, Chapter 10) took
place in an empty classroom at times when Mrs. Tale agreed to have students
pulled from her class. With one exception, all interviews occurred in the final week
of the two-digit multiplication unit. During the interviews, I had students solve
multiplication problems like those they worked on in class and for homework. Fig-
ure 9 shows the two interview tasks selected for this analysis. The first asked stu-

Task 1

Calculate the area of the rectangle using the method from class

17

Task 2

A drug store chain has 26 stores in each of 38 states. How many stores
does the chain have in all?

(1) Label the sides of the quadrant box appropriately
(2) Fill in the box by calculating the area of each quadrant,

(3) Solve the equation using the method from class.

+

FIGURE 9 The two interview tasks
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dents to solve 6 x 17 using the unit squares representation, the second to solve a
word problem using the quadrants representation. As one might expect, given the
directions for the two tasks, students tried to produce strategies like those dis-
cussed in class. When students were either done with a problem or stuck, 1 asked
them to explain what they had done and any difficulties they were having. Students
were encouraged to ask one other questions.

I recorded the interviews using two video cameras, one to capture the stu-
dents and one to capture what they wrote. I transcribed the interviews in their
entirety and added notes indicating what students wrote and what hand gestures
they used. I also kept all of the students’ written work in case the videotapes did
not capture important aspects clearly. I used microgenetic methods (Schoenfeld
et al., 1993) to analyze line-by-line utterances, hand gestures, and evolving writ-
ten work when determining how students used representational features to ac-
complish problem-solving goals. In contrast to the lesson analysis, during which
[ searched for patterns in observable behaviors, the intent of the interview analy-
sis was to attribute understandings to students. Examining utterances, hand ges-
tures, and evolving written work together allowed me to test attributed under-
standings more thoroughly than would have been possible if I had analyzed
students’ explanations or written work alone. A second researcher checked inde-
pendently the analysis of interviews with Pete and Jodi.

Resuilt 3

Four students completed both tasks correctly. All used methods that coordi-
nated magnitudes of partial products, expanded forms for factors. and the
distributive property; 2 also used variations of class strategies that were still
based on correct connections among numeric labels, unit squares, and areas
of rectangles.

To complete Task 1. Rachel, Alice, and Nina found groups using the “Counted 10
unit squares across and down.” “Added 10 + 15 labels.” and “Drew lines from plus
signs” strategies used in the first 11 class solutions and summarized in Table 1. All 3
students determined areas correctly, and Rachel and Nina explained their calcula-
tions in terms of dimensions found by counting unit squares along the top and side
(see Figure 2¢). Finally, all 3 found final products by adding the two partial products.
Figure 10 shows that Susy’s solution to Task 1, though based on different
groups of unil squares. was still constrained by correct connections among nu-
meric labels, unit squares, and areas of rectangles.” (A second student, Jodi, pro-

"Leould not scan Susy's work due to multiple layers of erusures and inseriptions, so I used the vid-
eotape to reconstruct her inscriptions,
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FIGURE 10 Susy's correct solution to Task 1.

duced a similar solution.) Susy found final products by adding the partial products
and checked her answer using the traditional algorithm.® Susy may have based her
solution on one past class discussion during which students proposed and dis-
cussed strategies similar to breaking 6 into 3 + 3. but she also appeared to base her
solution on strategic knowledge: She explained that smaller numbers meant she
did not have “to count so much™ and were easier to add.

Nina and Susy coordinated magnitudes of partial products, expanded forms for
factors. and the distributive property when using the quadrants representations Lo
complete Task 2. Alice, however, used strategies that relied on 100 squares and
other regions analogous to those in Figure 8. All 3 students pointed to numeric la-
bels when explaining how many imaginary unit squares were along the edges and
how many imaginary unit squares were contained inside regions of their represen-
tations. These explanations evidenced underlying connections among numeric la-
bels, unit squares, and areas of rectangles.

Rachel’s nearly correct solution to Task 2, shown in Figure 11, occurred before
labeling quadrants representations with expanded forms was discussed in class.
Rachel added the “20 + 6™ and “30 + 8" labels; calculated 20 x 30 = 500, 30 x 6 =
180, and 20 x 8 = 160; and wrote “500." “180.” *160.” and “48™ in the quadrants
representation. She computed 340 and 548 mentally and summed to get 888. Ra-
chel pointed to her labels when explaining how many unit squares were along the
edges of the 20-by-30 region and at that point caught her 20 x 30 = 500 error. She

¥Susy may have learned the traditional algorithm at home or froma classmate because some students
broughtitinto Mrs. Tate’s classroom, Mrs. Tate allowed students to check their work with the algorithm.
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FIGURE 11 Rachel's nearly correct solution to Task 2,

corrected both the partial product and her final sum, Like Nina, Susy. and Alice,
Rachel evidenced underlying connections among numeric labels, unit squares, and
areas of rectangles when explaining her solution.®

Summary

Given the extensive literature on secondary students’ difficulties with a wide
range of representations, Rachel, Alice, Nina, and Susy’s correct solutions to both
tasks are significant because they constitute an existence proof that these
fourth-grade students could solve complex problems using multiple representa-
tions. Students’ explanations even for Task 2 in terms of unit squares suggested that
their solutions were not rote. Susy provided vivid evidence that she understood un-
derlying connections among numeric labels, unit squares, and areas of rectangles by
varying class strategies in ways that reflected at least implicit understandings of the
distributive property when factors and products were represented geometrically.

Result 4

Four other students completed Task 1 correctly and articulated correct con-
nections among numeric labels, unit squares, and areas of regions, but strug-
gled in Task 2 to coordinate representational features with the goal of deter-
mining areas of quadrants.

"Because Maria was Rachel's partner. this discussion may explain Maria’s solution to 62 x 47 that
Mrs. Tate then picked up and used with her class (see Result 2).
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Pete and Jodi’s work on Task 2 revealed additional challenges students faced when
learning two-digit multiplication using the CMW materials that were not evident
from whole-class discussions. (Maria and Rachel, Jodi and Alice, and Pete and
Tom were partners.)

Pete's Work on Task 2

Summary of Pete's initial work. Pete read the drug store problem, wrote
“26 = 20 + 6" and “38 = 30 + 8" in the space provided for the expanded algo-
rithm, and calculated 60 + 48 = 108. Pete may have multiplied the tens numbers
to get 60, multiplied the ones numbers to get 48, and added the results. Such
computations would have combined two errors that Mrs. Tate had discussed with
her class: erring on magnitudes of products like 20 x 30 and omitting products
of tens and ones.

Pete wrote “30 + 8" across the top of the quadrants representation and “20 + 67
down the lefi-hand side but then stopped, saying that he did not “know how to do
this." Although Pete could not determine areas initially, he could recall the goals of
finding groups, determining areas, and finding final products.

When I returned Pete to his correct solution to Task 1, shown in Figure 12, he

explained three strategies for determining areas: counting all unit squares, multi-
plying dimensions found in numeric labels (see Figure 2d), and multiplying di-
mensions found in unit squares along edges of regions (see Figure 2¢).

Pete’s explanations suggested that he had appropriated the class strategies listed
in Table 1 of “Pointed to 10s and 1s in labels™ and “Counted unit squares across
and down and multiplied.” He then wrote and partially erased several incorrect
equations in various quadrants in Task 2 (see Figare 13).

17

FIGURE 12 Pete’s solution to 6 % 17
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FIGURE 13 Pete determined areas. Note that o make Pete’s final work in the boi-
tom-nght-hand quadrant readable, Lhave deleted *0x 0=0,"“30 % 6," and “180,” initial inscrip-
nons that he erased.

Pete connected quadrants and unit squares representations. When
[ asked Pete once more about his solution to 6 x 17, he explained that 60 and 42
told him how many unit squares were in each region. I reminded him that num-
bers in quadrants were also supposed to reflect “the number of unit squares.”
Pete agreed and immediately explained connections between unit squares and
quadrants representations:

Al Pete:  The answer is the amount of unit squares in here (pointed to the
unit squares representation for Task 1), right? So, this is (pointed
to the quadrants representation for Task 2), see this is just 1 big,
like. thingy of this (pointed to the unit squares representation).
The easiest way for me to figure out like a problem like this
(pointed to the unit squares representation) is just make this
(pointed to the unit squares representation), like this (pointed to
the quadrants representation). like all these little square units in
there (pointed to the quadrants representation), just make it look
like this (pointed to the unit squares representation) and 1 can
figure it out.

A2 Int:  Umm, I didn’t quite follow that, I got a little conf..., | got a little
confused. Can you repeat it please?
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A3 Pete: Imagine this (pointed to the unit squares representation),
Ad Int: Mm.

A5 Pete; like this thingy (pointed to the quadrants representation), like
being a box with square units inside.

Analysis. Pete could explain some connections between the quadrants and
unit squares representations, but needed new strategies for determining areas when
unit squares were no longer present. Although Pete could not write appropriate
equations for quadrants in Task 2, his at least partial connections between unit
squares and quadrants representations were particularly clear when he said that the
quadrants representation in Task 2 was just a “big"” version of the unit squares rep-
resentation (line A1), and when he asked me to imagine the quadrants representa-
tion with “square units inside™ (line AS).

Pete determined areas of quadrants after drawing some unit squares.
Pete identified what made quadrants representations hard for him to use, “There’s
no square units inside so it's hard to, um, multiply ‘canse I usually count.” He then
introduced the problem 17 x 18 and counted imaginary unit squares along edges of
the 10-by-10 region in the quadrants representation to determine “that’s 100.” Pete
explained that he would “do the same™ with the remaining three quadrants and
“add ‘em up and get the answer.”

| asked Pete to draw unit squares in the bottom right-hand corner of the quad-
rants representation for 26 x 38. He pointed to the 8 and 6 in his numeric labels,
said that there would be 8 squares across and 6 down, and drew these in (see Figure
13). When I asked how many unit squares were in that quadrant, Pete answered
“48" immediately and wrote this number in the quadrant. 1 asked how he found this
out, and Pete explained that “you multiply the top (traced the row of unit squares he
had just drawn) and this (traced the column of unit squares he had just drawn).”

Next | asked Pete to make another quadrant “easier to work with,” and he drew 8
and 21 unit squares along the edges of the 20-by-8 region. (I did not notice that
Pete had drawn an extra square.) When [ asked why these were the right numbers
of unit squares, Pete pointed to the 8 and 20 in his numeric labels. Then, to calcu-
late the total number of unit squares, he first added eight 20s and then multiplied 20
x 8. Instead of drawing unit squares for the final two quadrants, Pete calculated 30
% 20 and 30 x 6 to the side of the quadrants representation. Pete did not change his
20 x 8 calculation for the bottom left-hand quadrant and appeared confused when |
focused his attention on the discrepant answers. Pete did not have time to find the
final product.
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Analysis. Data in this section suggested that Pete evolved old strategies
that relied on unit squares into new ones that relied on numeric labels. Pete may
not have attended initially to the connection between numeric labels and num-
bers of unit squares along edges of quadrants, but he gestured immediately to-
ward the 6 and 8 in his numeric labels when I asked him to draw. Pete used his
drawn unit squares to determine the area of the 6-by-8 region in the same way
that he used unit squares in his solution to 6 x 17. How Pete used drawn unit
squares to determine the area of the 20-by-8 region was less clear because of the
extra unit square, but he clearly calculated 160 in two different ways and so per-
haps miscounted. I supported Pete’s accomplishment by asking him to recall the
unit squares strategy that he understood and to modify the quadrants representa-
tion so that he could apply that strategy once more. The numeric label strategy
that Pete arrived at may have emerged by condensing a two-step strategy in
which he used labels to determine how many unit squares to draw, and then used
drawn squares to determine areas,

Although Pete apparently used new representational features to determine areas,
his confusion about discrepant answers for the bottom lefi-hand quadrant cast doubt
on the stability of his strategy. Pete’s initial difficulties suggested that he needed
more assistance understanding connections between numeric labels and unit
squares like those that Mrs. Tate had discussed for the 8-by-4 region during the class
solution to 28 x 34 and for the 20-by-60 region during the class solution to 25 x 63.

Jodi's Work on Task 2

Jodi had difficulty using labels to determine areas of quadrants. Jodi
read the drug store problem, wrote “10 + 10 + 10 + 8" across the top of the quad-
rants representation, and wrote “10 + 10 + 6" down the left-hand side. Figure 14

O+ o+ * =

I0x€-80

0o Yico | 160

(00| (0o V100

gx b4

[O%6=60)

FIGURE 14 Jodi labeled the quadrants representation, attempted areas, and completed cor-
rect numeric methods,
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shows that she drew horizontal and vertical lines across the top left-hand quadrant,
wrote “100” in each of the resulting 100 squares. wrote “10 x 8 = 80™ in the top
right-hand quadrant, wrote *10 x 6 = 60" in the bottom left-hand quadrant, and
wrote “8 x 6 = 48" in the bottom right-hand quadrant. She also completed the ex-
panded algorithm and lattice methods correctly.'?

Note Jodi’s use of 10s in numeric labels as she explained her work:

Bl Jodi: 1did 10 times 10 (pointed to the first 10 in 10 + 10 + 6 and the
first 10in 10+ 10+ 10+ 8), which is 100 (pointed to the top left
100 square). And then 1 kept on doing that (pointed back and
forth between 10+ 10+6 and 10+ 10+ 10 + 8). And all of these
were 100 (pointed to the remaining 100 squares).

B2 Int: OK.

B3 Jodi: And then what I did is I did 8 times 6 (pointed to the 6 in 10+ 10
+6and the 8 in 10 + 10 + 10 + 8), which went here (pointed to
the bottom right-hand quadrant). and then 10 times 6 (pointed to
the third 10 in 10+ 10+ 10+ 8 and the 6 in 10 + 10 + 6), which
went here (pointed to the bottom left-hand quadrant). And then
10 times 8 (pointed to the second 10 in 10+ 10 + 6 and the 8 in
10+ 10+ 10+ 8), which went here (pointed to the top right-hand
quadrant).

Jodi finished her comments by explaining that she used two numeric methods,
each of which gave the same answer. Her comments did not suggest that she com-

pared her numeric methods against her work with the quadrants representation.

After Jodi's partner, Alice, explained how she determined areas lor various
regions in her work, [ began to investigate why Jodi did not determine correct ar-
eas for the 20-by-8 and 6-by-30 quadrants by asking how many unit squares
were “supposed” to go across the top and down the side of several regions. Jodi
said that there would be 10 squares across and down for 100 squares, and 30
squares across and 6 down for the 6-by-30 quadrant. She continued pointing to
the third 10 in 10+ 10 + 10 + 8§ as she gave further explanations for her 10 x 6 =
60 equation.

C1 Jodi: Well what 1, what 1 did is since, 1 just, [, (pointed to the 6 in 10 +
10 4+ 6) if I do, since there were 10s up here (pointed toward the
10+ 10+ 10+ 8 label), and how I got 10 times 6. was (pointed to

10T he lattice. or Galosia, method was introduced one day when the school principal demonstrated
an Evervduy Mathematics lesson (University of Chicago School Mathematics Project, 1995).
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FIGURE 15 Jodi divided the 6-by-30 region three ways

the third 10in 10+ 10 + 10 + 8) L like I just ... (pointed to the 6
in 10+ 10+ 6) 10, 6 times, well 10 times 6 (pointed to the third
10in 10+ 10+ 10+ 8 and the 6 in 10+ 10+ 6) because if it was, 1
wouldn’t do it 6 times & (pointed to the 6 in 10+ 10 + 6 and the 8
in 10+ 10+ 10 + 8) because that would go there (pointed to the
bottom right-hand quadrant).

Mm:

But if I did, and 10 times (pointed to the third 10in 104 10 + 10
+ 8), and 1f there, there’s 10 going across in each of the 100
boxes (pointed to each of the three 100 squares directly over the
6-by-30 quadrant), so I thought about doing 10 times 6 (pointed
to the 6in 10+ 10 + 6 and the third 10 in 10+ 10+ 10 + §), in-
stead of splitting it up into like 10, 10 times like 3. because then
it will be, like. it will be 90, if 1.did 10 times 3.'! But if 1, if 1, if |
made this smaller, if (split the 6-by-30 quadrant with a vertical
ling, see Figure 15a), if [ cut this in half, it’ll be 10 times 3
(pointed to the second 10in 10+ 10+ 10+ 8 and the 6in 10+ 10
+6), and then 10 times 3 (pointed to the third 10 in 10+ 10+ 10
+ 8 and the 6 in 10 + 10+ 6), but since I'm doing 26 (pointed to
the 6 in 10+ 10 +6), it was just one 6 (erases the line that she just
drew).

After this explanation, 1 asked Jodi again how many unit squares were “sup-
posed to fit” along the top edge of the 6-by-30 quadrant. Jodi said “30." 1 then

asked her if the *

equation” was 10 x 6, and Jodi said, “Yeah.”

Analysis. Jodi began Task 2 by adding numerical labels and lines like those
in Figure 8 and in the second set of class solutions for finding groups (“Broke fac-
tors into single 10s and Is directly™ and “Drew lines from plus signs” in Table 1).
Having introduced the 10+ 10 + 10 + 8 and 10+ 10 + 6 labels. and having drawn

M eould nottell how Jodi arrived at 90, but she appeared to drop this as she continued herex planation.
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lines across just the 20-by-30 quadrant, Jodi had then to coordinate numeric labels
with areas of sub-regions in complex ways. She did not explain why she subdi-
vided just the 20-by-30 quadrant, but may have recalled an atypical class solution
from 1 week before this interview. During the solution to 66 x 48, Mrs. Tate drew
lines across just the 60-by-40) quadrant because the instructional materials in-
cluded a 100s/10s/1s representation in which all other lines for groups of 10s and
I's were printed.

One explanation for why Jodi arrived at 10 x 6 repeatedly (lines B3, C1, and
C3) was that she did not understand the dimensions of the 6-by-30 quadrant. but
she twice stated that there were 30 unit squares across the top and once stated
that there were 6 down the left-hand side. A second explanation was that Jodi
momentarily forgot the dimensions, but she explained that there were 10 unit
squares across each of three 100 squares and then restated her incorrect 10 x 6
expression (line C3). These data strongly suggested that Jodi understood the
number of unit squares along the edges of the 6-by-30 quadrant. yet could not
determine the area.

A third explanation for why Jodi arrived at 10 x 6 was that she did not fully un-
derstand how to use her numeric labels. Jodi consistently used individual addends
inher 10+ 10+ 10+ 8 and 10+ 10 + 6 labels. This use of labels was correct for the
top left 100 square and the 6-by-8 quadrant (lines B1 and B3), but she extended this
use inappropriately to the 6-by-30 and 20-by-8 quadrants. She consistently ges-
tured toward the third 10in 10+ 10 + 10+ 8 when discussing 10 x 6= 60 (lines B3,
C1, and C3) and gestured once toward the second 10 in 10+ 10 + 6 when discuss-
ing 10 x 8 = 80 (line B3). Moreover, after dividing the 6-by-30 quadrant in two,
Jodi pointed to different 10s in 10+ 10 + 10 + 8 and may have used separate, imag-
ined 3s when calculating 10 x 3 for each sub-region (line C3). Jodi did not appear
to notice the discrepancy between her equations for quadrants and the 30 x 6 and
20 x 8 calculations in her numeric methods. She could use numeric methods cor-
rectly, but did not connect them fully to the area context.

Jodi’s difficulties continued. During the balance of the interview, Jodi in-
troduced a second and third strategy for determining the area of the 6-by-30 quad-
rant. Neither was correct, For her second strategy, she extended her drawn vertical
lines from the 20-by-30 quadrant, dividing the 6-by-30 quadrant into three parts
(see Figure 15b). She explained that she would calculate 10 x 2 for each sub-re-
gion, because the resulting 20s would still add to 60. 1 asked for the number of unit
squares along the edges of one of these regions, and Jodi answered 6 and 10. When
I asked how many unit squares would be inside. Jodi appeared to experience con-
tlict and answered, “Oh. 60.”

Jodi then introduced her third strategy by erasing the 6 in her 10+ 10 + 6 label,
writing 2 +2 + 2" in its place, and drawing two horizontal lines across the 6-by-30
quadrant (see Figure 15c¢). She said, "Now it’l be 10 times 2."  asked Jodi to shade
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the region to which she referred. She shaded the topmost 2-by-30 region as shown
in Figure 15¢, but explained that “since there’s 10 going across (traced the top edge
of the leftmost shaded 2-by-10 region) and 2 going down (traced the left-hand edge
of the same region), it'll be 10 times 2" When 1 asked Jodi if 10 x 2 was for the
whole shaded region, she said no “because there’s three 10s going across (pointed
to each 10 in her 10+ 10 + 10 + 8 label), which is 30.” Jodi changed her computa-
tion for the shaded region to 30 x 2, added 60 three times, and arrived at 180,

Jodi was not convinced that her new approach was correct. however, and for the
balance of the interview favored her original 10 x 6 = 60 equation. When Alice ex-
plained how she used 10 x 6 = 60 for each of three regions that resembled those in
Figure 15b, Jodi argued, “I think it should only be one [60] because it’s, it’s, you're
only timesing one, you are only like timesing one 6 (pointed to the 6 in Alice’s la-
bel).” When I asked Jodi why, she responded. “Because there’s only one 6 (pointed
to the 6 in Alice’s label).”

Analysis. Jodi struggled to coordinate three understandings about the
6-by-30 quadrant, The first correct understanding was about numbers of unit
squares along edges of regions. In an earlier section, Jodi stated that there were 30
unit squares across and 6 down. In an earlier section, she stated that there were 10
unit squares across the top and 6 down the side of one 6-by-10 region in Figure
I5b. and that there were 10 unit squares across the top and 2 down the side of one
2-by-10 region in Figure 15¢. The second understanding was about using numeric
labels 1o determine equations. Jodi continued to use individual addends from the
horizontal and vertical labels when determining equations. When determining the
equations for the three subregions in the 6-by-30 quadrant (Figure 15h), Jodi broke
apart the 6 in 10 + 10 + 6 into three 2s and appeared to use a different 2 and 10 for
each 2-by-10 region. Moreover. when questioning Alice’s approach, Jodi ex-
plained that you should only multiply one 6 because there was only one 6 in Alice’s
label. She did not seem to notice that she had initially used 6 both in her 10 x 6 = 60
and in her 8 x 6 = 48 calculations. The third understanding, made clear by Jodi’s
methods shown in Figure 15a and 15b, was that the “answer™ for the 6-by-30 quad-
rant should be 60. This understanding was incorrect and obstructed her coordina-
tion of unit squares and numeric labels. Had she focused more on her calculations
for the expanded algorithm and lattice methods. she might have overcome this dif-
ficulty. Jodi remained focused on determining areas and did not discuss finding fi-
nal products during her interview.

Maria and Tom

Maria and Tom also had difficulty determining areas ol quadrants. Like Pete.
Maria relied on counting unit squares to determine areas and so could not use
the quadrants representation. Tom reversed the products for the 6-by-30 and
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20-by-8 quadrants, He explained that he used large factors (i.e.. 20 and 30) for
the large quadrant and small factors (i.e., 8 and 6) for the small quadrant.!* Be-
cause Tom relied on correspondences between relative sizes of factors and quad-
rants, he may not have seen any difference between putting a given medium
sized product in one medium sized quadrant or the other. His strategy led to cor-
rect answers, although it did not reflect correct connections between numeric la-
bels and areas of quadrants. Tom may have based his strategy on an explanation
that Mrs. Tate provided during one whole-class solution a week prior to his in-
terview. In that explanation, Mrs. Tate told students to use the numbers from the
biggest region in the 100s/10s/1s representation (i.e.. tens x tens) for the biggest
guadrant in the quadrants representation.

The Final Four Students

The remaining 4 students 1 interviewed could not complete Task 1, because they
struggled with connections among numeric labels, unit squares, and areas of regions,
Two of these students received services for learning disabilities in mathematics.
Some could not add appropriate labels to the unit squares representation in Task 1.
Those who could often had to count all unit squares in a given region to determine
the area.

Summary

Pete, Jodi, Maria. and Tom’s work on Task 1 made clear that these students
could make appropriate connections among numeric labels, unit squares, and areas
of rectangles when unit squares were present. These same students’ work on Task 2
suggested that making connections within and among representations, though nec-
essary, can still be insufficient for solving problems. In particular, these students
struggled to coordinate representational features with the goal of determining ar-
eas of quadrants. Pete struggled to find dimensions when unit squares were not
present, but began using strategies that relied on numeric labels during his inter-
view. Jodi and Tom added appropriate numeric labels for dimensions, but strug-
gled to coordinate addends in those labels with areas. Jodi's challenge appeared to
be coordinating the groups of imaginary unit squares that she formed by drawing
vertical and horizontal lines and her use of individual addends in numeric labels.
The performance of the final four students made clear that more time and support
may be necessary if all students are to find accessible an approach to two-digit
multiplication based on areas of rectangles.

2This is the explanation that may have led Pete 1o erase his 0 x 0 = 0 equations.
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STUDENTS' PERFORMANCE
ON THE END-OF-UNIT TEST

The end-of-unit test complemented the interview data by providing data on stu-
dents’ computation performance. The test asked students to solve the problems 17
% 12,45 x 26, 37 x 24, and 92 x 78 and “to draw any pictures that you need.” The
percentage of Mrs. Tate’s students who answered each problem correctly were
88%, 80%, 80%, and 64%, respectively. These are strong results compared to the
54% of U.S. fifth-grade students who solved 45 x 26 correctly in the Stigler et al.
(1990) study cited at the outset of this article. Mrs. Tate’s students answered the
four items using one or more of the following three methods: the expanded algo-
rithm, the traditional U.S. method, or the lattice (Gelosia) method. Again, the sec-
ond method was brought into Mrs. Tate's class by students, and the third was intro-
duced by the school principal. The distribution of methods that students used was
similar for each of the four items. Although not required to do so, five students
drew quadrants representations for at least one problem and, in all but one case, ar-
rived at correct answers.

For the item 45 x 26, 19 of Mrs. Tate’s 25 students (76% ) used the expanded algo-
rithm. Of these, 10 (40%) used just the expanded algorithm and used it correctly, 4
(16%) used both the expanded algorithm and the traditional U.S. method correctly,
and 1 (4%) used the expanded algorithm and the lattice method correctly. The re-
maining 4 (16%) students who used the expanded algorithm set up correct factors for
all four partial products. One student computed all partial products correctly except
5% 6=48, one student computed all partial products correctly except 40 x 20 = 8000,
one student computed all partial products correctly except 40 x 20=8000 and 40 x 6
= 100, and one student got the correct answer but reversed partial products for quad-
rants in the same way that Tom did. Mrs. Tate’s remaining 6 (24% ) students used the
traditionalmethod. Of these, 4 (16% ) used just the traditional method and used it cor-
rectly, 1 (4%) used the traditional and lattice methods correctly. and 1 (4% ) began the
traditional method, determined 6 x 45, but was unable to compute 20 % 45. These re-
sults demonstrate that by end of the CMW two-digit multiplication unit a large ma-
jority of students could compute correctly with the expanded algorithm, and many
could use a second method as well. Note that for some students, including Jodi, the
ability to perform correct computations may have preceded the ability to fully con-
nect numeric methods to areas of rectangles.

DISCUSSION AND IMPLICATIONS

Analysis of whole-class solutions to two-digit multiplication problems revealed
that Mrs. Tate and her students contributed to a range of class strategies, particu-
larly for determining areas in unit squares and 100s/10s/1s representations (Re-
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sult 1), and that these strategies eventually converged on those that coordinated
magnitudes of partial products, expanded forms for factors, and the distributive
property (Result 2). The analysis pointed to challenging decisions that teachers
must make about the range of strategies they pursue with their students. Some
teachers may value having all students use the same approach to solve a class of
problems, such as two-digit multiplication problems. Although emphasizing one
approach might minimize some sources of student confusion, there are impor-
tant reasons for exploring multiple approaches. A range of approaches can make
topics or problems accessible to students with diverse understandings, can pro-
vide a context in which to discuss conditions under which each approach might
be advantageous, and can afford opportunities to make connections among dif-
ferent representations of the problem context. Thus, multiple approaches can
make mathematical connections and flexible problem solving realizable in heter-
ogeneous classrooms.

The analysis of Mrs. Tate’s lessons not only illuminated such opportunities but
also raised questions about when teachers should direct students toward particular
strategies. If Mrs. Tate provided too little guidance. then her students might not co-
ordinate expanded forms for factors and repeated groups, and hence might not de-
velop understandings of efficient and general multiplication methods. If she
moved the class to particular groups too quickly, however, then students might
have a hard time participating if the method they understood dropped from class
discussions. Despite the challenges of pursuing multiple problem-solving strate-
gies in classrooms, affording a range of initial approaches and managing conver-
gence toward target strategies may be a useful design principle for instructional
materials that aim to support conceptual and procedural understandings of core
topics.

Analysis of end-of-unit interviews revealed the different degrees to which stu-
dents had connected numeric methods to areas of rectangles (Results 3 and 4) and
further learning issues that were not evidenced in whole-class discussions (Result
4), These results complement those of Outhred and Mitchelmore (2000) by sug-
gesting that many fourth-grade students can use multiple representations and the
array structure of equal rows and columns to develop conceptual understandings of
multidigit multiplication. Whereas Outhred and Mitchelmore found that
fourth-grade students could cover rectangles by drawing arrays of unit squares,
suggesting students’ intuitive understanding of area measurements when dimen-
sions are whole numbers, this study found that some fourth-grade students could
connect dimensions of rectangular arrays to numeric labels more readily than oth-
ers. In particular, even though Pete and Jodi were present for the class solutions to
28 x 34 and 25 x 63, during which Mrs, Tate discussed connections between strate-
gies that relied on unit squares and those that relied on numeric labels, these stu-
dents’ difficulties revealed that some students did not readily make similar connec-
tions. Thus important aspects of teaching and learning with the CMW two-digit
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multiplication materials did not surface in whole-class discussions. More explicit
discussions identifying particular representational features. connections among
such features, and ways that different features can be used to accomplish similar
goals may have helped more of Mrs. Tate's students connect the geometric and nu-
meric representations. Such results demonstrate the detail with which analyses
need to be conducted if they are to provide insight into processes of teaching and
learning with multiple representations.

Results of this study suggest that revised CMW two-digit multiplication materi-
als could benefit more students. The repeated groups on which some students fo-
cused, particularly in the 100s/10s/1s representation, afforded coordination of
magnitudes of factors and products, but not expanded forms for factors and the dis-
tributive property. The sequence of problems in the CMW materials has been re-
vised and restrict 100s/10s/1s representations to a few lessons that focus on prod-
uets like 20 x 30 = 600 and 8 x 30 = 240. The intent is for students to connect
dimensions of six 100 squares or three 80 rectangles with areas of those regions, to
understand the advantages of using repeated groups that coordinate expanded
forms for factors and hence emphasize place value, and to use those understand-
ings as the basis for solving more complex multiplication problems.

Finally, as mentioned at the close of the previous background section, Mrs, Tate
did not focus on the same norms for justifying solutions as did teachers at the cen-
ter of previous studies that have used the emergent perspective. Thus, when Mrs.
Tate's students stopped asking questions about strategies for finding groups and
determining areas, those strategies became beyond justification and thus met the
standard for taken-as-shared in this classroom. Nevertheless. the end-of-unit inter-
views revealed that Mrs. Tate's students understood class strategies to very differ-
ent degrees. Had norms been established in Mrs. Tate's classroom that afforded
more opportunities for students to explain strategies in full, and that required stu-
dents to take greater responsibility for asking questions when they did not under-
stand, then the standard for taken-as-shared might have been higher and taken
more time to achieve. This observation suggests the hypotheses that norms and
classroom mathematical practices are tightly connected, that different configura-
tions of norms can lead to different means by which practices emerge, and that the
means by which practices emerge can shape in fundamental ways relationships be-
tween individual learning and that of the classroom community. Such hypotheses
should be the subject of future research.
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