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This article proposes a taxonomy of strategies for single-digit multiplication, then uses
it to elucidate the nature of the learning tasks involved in multiplication. In preceding
work, it has generally been assumed that much of children’s strategy development is
driven by changes in their general conceptual capabilities relating to number. In
contrast, we argue that, during the period in which single-digit multiplication is the
focus of explicit classroom attention, changes in strategy use are primarily driven by
the learning of number-specific computational resources. For this reason, we cate-
gorize multiplication strategies based upon the number-specific resources that are
employed in their execution. To support our conclusions, we draw from a corpus of
interviews with third-grade students that were conducted before, during, and after
instruction in multiplication. 
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A great deal has been written about the development of children’s strategies for
adding single-digit numbers. Researchers have largely agreed on types of strate-
gies, and there has been some convergence on the terminology for describing these
types. For example, using the terminology in the handbook article by Fuson (1992),
the earliest adding strategies use a count-all procedure: the child starts by directly
representing and counting each of the addends, and then counts all the items in the
representation, starting at 1 and proceeding to the total. The next strategy to appear
is count-on: the child starts at one addend, and then counts on from there through
the rest of the objects to find the total.

The state of research on single-digit multiplication differs greatly from that on
addition. Although there is a growing body of research (e.g., Anghileri, 1989; Kouba,
1989; Mulligan & Mitchelmore, 1997), researchers still differ greatly on the strate-
gies described as well as in the terminology used. Thus, we believe the time is right
to attempt to forge consensus on a taxonomy of strategies for multiplication.
Building on the work of other researchers, as well as on our own data and analyses,
we propose such a taxonomy and use it to elucidate the nature of the learning tasks
involved in multiplication. Furthermore, we use this taxonomy to describe how chil-
dren’s use of multiplication strategies changes as a result of growth and instruction.
To meet these goals, we have adopted a two-pronged approach. First, we draw
together and synthesize the work that has been done by other researchers in an
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attempt to build on this existing work and resolve any conflicts, apparent or real.
Second, we have supplemented this prior work with analyses of our own data corpus
in order to illustrate our points and support our larger argument.

Although we synthesize and build on prior research, there are some fundamental
differences between our stance and those adopted in preceding work on both addi-
tion and multiplication strategies. In preceding work, it has generally been assumed
that much of children’s early strategy development is driven by changes in their
general conceptual capabilities relating to number. For the case of single-digit addi-
tion, we believe that many of the important developments in strategy use really are
driven by such changes. However, we believe that there are other mechanisms that
may sometimes dominate. In particular, for single-digit multiplication, we will argue
that during the period in which multiplication is the focus of explicit classroom atten-
tion, changes in strategy use are primarily driven by the learning of number-specific
computational resources. Stated simply, students acquire a great deal of knowledge
about specific numbers—such as 4, 12, and 32—and this knowledge allows the use
of new strategies or the use of old strategies in new contexts. For this reason, many
of the central issues associated with the learning of single-digit multiplication are
very different from those associated with addition.

This stance has significant implications for the manner in which we can expect
to achieve our stated goals. Most dramatically, this stance moderates the extent to
which we can expect to develop a simple and universal account of learning
progressions in multiplication strategies. Strategy use by individuals, in a partic-
ular circumstance, will be very sensitive to the number-specific resources avail-
able, which are in turn sensitive to details of instruction. Thus, while a major goal
of this article is to outline broad features of a taxonomy and learning progression,
we must also comment on how we expect the learning of computational strategies
to vary across cultural and instructional contexts. In addition, there are some
important cases in which the scheme we propose breaks down. This is particularly
true as students’ expertise increases. As students learn, they develop an increas-
ingly rich network of knowledge about specific numbers. In essence, their number-
specific resources merge and, because of this merging, it does not make sense to
speak of students using one strategy or another. This does not, we believe, diminish
the usefulness of our taxonomic scheme. But it does have important implications
for the criteria that should be employed as we attempt to forge consensus on a
particular taxonomy.

THE LAY OF THE LAND: AN OVERVIEW OF PRIOR RESEARCH

Four major threads characterize much of the range of research pertaining to the
learning of single-digit multiplication: research concerned with (1) semantic types
(models of situations), (2) intuitive models, (3) solution procedures (computa-
tional strategies), and (4) models of retrieval. Research on semantic types is
concerned with categorizing the situations described in word problems according
to how they are schematized prior to solution (e.g., Greer, 1992; Kouba, 1989;
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Marshall, 1995; Nesher, 1988; Reed, 1999). These categories of types include equal
grouping, rate, and Cartesian product. Some of this work is ambitious in the
extent to which the authors attempt to provide an integrated account. For example,
Vergnaud (1988) places his analysis within a larger framework that is concerned
with “multiplicative structures.” And Greer (1992) proposed a synthesis of semantic
types—which he calls “models of situations”—for both multiplication and division.

Research on intuitive models, although closely related to the discussion of
semantic types, has generally been treated separately. The discussion of intuitive
models can be traced back to a seminal article by Fischbein and colleagues
(Fischbein, Deri, Nello, & Marino, 1985).1 In this article, the authors hypothesize
that “Each fundamental operation of arithmetic generally remains linked to an
implicit, unconscious and primitive intuitive model” (p. 4). Solving a problem
involving two numbers is mediated by this model. Furthermore, in the case of multi-
plication, this intuitive model is hypothesized to be “repeated addition.” The precise
relationship between these first two research threads—semantic types and intuitive
models—is somewhat subtle and is not of central interest in the present article.
However, note that intuitive models are generally assumed to cut across semantic
types (e.g., Mulligan & Mitchelmore, 1997). In fact, in the original work by
Fischbein et al., it was argued that a single intuitive model underlies all under-
standing of multiplication.

The third thread in single-digit multiplication research pertains to what have been
variously called solution procedures, solution strategies, and computational strate-
gies. Analyses of computational strategies are concerned with describing the
sequence of operations that a student performs in order to get from the given
numbers to the product. In the research literature, discussions of computational
strategies are typically combined with discussions of one of the first two threads
(e.g., Kouba, 1989; Mulligan & Mitchelmore, 1997).

The final thread of research focuses on the nature and development of retrieval.
Typically, one of the goals of instruction in single-digit multiplication is to help
students develop the ability to quickly state the product of two given operands. Some
researchers have been concerned with building detailed cognitive models of this
ability and how it develops (e.g., Baroody, 1999; Cooney, Swanson, & Ladd,
1988; LeFevre & Liu, 1997; Lemaire & Siegler, 1995; Siegler, 1988). Research of
this sort usually has some concern with computational strategies, but when cate-
gorizing strategies, a simple binary split between retrieval and nonretrieval strate-
gies is often made. 

Several authors have tried to address multiple threads simultaneously (particu-
larly the first three threads). Some of this work is rather ambitious, attempting to
paint a broad and encompassing picture of the development of multiplicative
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thinking (e.g., Confrey, 1994, 1998; Steffe, 1992; Steffe & Cobb, 1998; Vergnaud,
1988). In contrast, the present article is restricted almost entirely to the third thread,
which concerns computational strategies. Furthermore, we will primarily be
concerned with the development of these strategies as it occurs during the time when
single-digit multiplication is directly addressed in school-based instruction, although
our full taxonomy will encompass preinstruction strategies as well.2

To be clear, when we speak of a computational strategy, we refer to patterns in
computational activity, viewed at a certain level of abstraction. This is in contrast
to an alternative stance that views strategies as knowledge (cognitive structures)
possessed by individuals. Computational strategies, as we speak of them, are not
knowledge; rather, a computational strategy is a pattern in computational activity—
a pattern in the steps taken toward producing a numerical result. Sometimes, in
our view, there is a simple relationship between a specific computational strategy
and knowledge possessed by an individual student, but this need not always be the
case.

THE MECHANISMS THAT DRIVE EARLY LEARNING PROGRESSIONS
IN ADDITION AND MULTIPLICATION

The purpose of this article is to propose a consensus taxonomy for multiplica-
tion strategies and to discuss student learning progressions through this taxonomy.
However, prior to proposing a taxonomy, we must address the question of whether
it is even possible to develop such a consensus taxonomy. Of course, any learning
progression is somewhat dependent on the nature of instruction. Nevertheless,
some learning progressions that we discover in mathematics learning may be
strongly constrained by factors that are largely outside of our control, such as the
inherent structure of the mathematics, the knowledge that students bring to their
learning, nearly universal attributes of children’s experience, and the more global
developmental unfolding of cognitive capabilities. We read prior research as saying
that learning progressions in single-digit addition learning are, to a certain extent,
of this more constrained sort. In contrast, we believe that the learning progression
in single-digit multiplication is less strongly constrained by factors that will be
largely independent of context. The entire weight of this article will be needed to
fully argue for this claim. Our core point is that the degree of invariance that we
can expect in any learning progression will depend on the nature of the mechanisms
that drive development in students’ strategy use. In the subsections that follow, we
discuss, first, the mechanisms that drive strategy development in single-digit addi-
tion. Then we describe our hypotheses concerning mechanisms in multiplication.
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Mechanisms That Drive Strategy Development in Addition

For the case of addition, we begin with the account presented in Fuson (1992),
wherein is described a developmental progression with three levels in “conceptual
structures for addition and subtraction” (p. 250). The three levels are as follows:

1. Perceptual unit items. Children must present addition or subtraction situations
to themselves using objects or perceptual unit items. 

2. Embedded integration. All three quantities involved—the two addends and the
sum—can be simultaneously represented by embedding entities for the addends
within the sum.

3. Ideal unit items. The addends are not embedded within the sum, but are outside
and can be compared to the sum. Numbers become units that comprise numer-
ical triads—two known addends and a known sum. This permits recomposition
of the addends so that a problem can be transformed into an easier sum of
different addends.

In this account, development in computational strategies3 is seen to happen in
conjunction with these changes in fundamental conceptual structures. Students at
the first developmental level perform addition by directly modeling the problem
with items of some type. First, they count out items for each of the addends, then
they count all of the items, starting at 1 and proceeding to the total. In contrast,
students at level two are capable of using a count-on procedure. They can start at
the first addend and then count on the second addend to find the total. Finally, at
level three, students can use procedures that involve recomposing the addends, so
that a problem can be transformed such that a known number triad can be employed.

Built into this account are some particular assumptions about the mechanisms that
drive the development of students’ addition strategies. At the larger level, the
development is seen as driven by changes in children’s ability to conceptualize the
quantity relationships that are at the heart of the addition task. It is also implied that
this development in conceptual structures is invariant across a wide range of
cultural and classroom contexts, and thus that the development in computational
strategies is also largely invariant. To the extent that these assumptions are correct,
they imply that we should expect substantial invariance in the strategies that we
observe across contexts. Furthermore, because strategy change is linked to funda-
mental conceptual development, it implies that, when this development occurs, we
should expect relatively rapid, across-the-board changes in strategy use. For
example, when a student reaches the embedded integration level, we can expect that
the student will, in a relatively short time period, apply the count-on strategy across
a wide range of numbers.

There are some exceptions to this generalization, however. The new strategies
associated with the third level of development are called known fact and derived
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fact (Fuson, 1992). These strategies are based on known number triads—triads that
include two given addends and their associated sum. Thus, at least during the latter
phase, we must expect strategy development to happen in a more piecemeal way,
with the known fact strategy being applied to some numbers and not others. The
use of strategies such as count on may also depend, to some extent, on some
number-specific knowledge.

Our analysis is presented schematically in Figure 1. In this figure, we divide the
cognitive resources of individuals into three broad categories. The first category
shows changes in fundamental conceptual structures; this is what changes as the
students move from perceptual unit items to embedded integration and then to ideal
unit items. The developments here essentially correspond to changes in basic capa-
bilities for representing the relationships among quantities in an addition task.

As we began to suggest above, not all of our knowledge of mathematics is of this
general sort. All of us who have learned mathematics also know a great deal about
specific numbers. We may know, for example, that 13 is prime and that 12 is made
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Figure 1. Mechanisms that drive the development of strategies in single-digit addition



up of three 4’s. The second category in Figure 1—number-specific resources—is
intended to capture knowledge of this sort. As shown in the figure, knowledge of
specific addition triads may develop in parallel with other learning. During the
earliest phases, students may know rapidly that 1 + 1 = 2 and that 2 + 2 = 4. A little
later, this may expand to include triads of the form X + 1 = Y as well as doubles,
such as 6 + 6 = 12. Finally, students may eventually know many addition triads.

The third category of cognitive resources in Figure 1 lists explicit knowledge of
solution methods. We expect that, in addition to knowledge that supports solution
strategies, students have knowledge of a specific sequence of steps that can be used
to solve problems. Given the framework in Figure 1, we can restate our analysis of
mechanisms that drive strategy development in addition: The development of addi-
tion strategies is strongly linked to changes in the first category of knowledge
resource—fundamental conceptual structures—and these changes drive across-the-
board changes in strategy use. Secondarily, the development of number-specific
knowledge supports some strategy change, particularly at later phases. These
changes, however, are specific to the triads that are learned.

Mechanisms That Drive Strategy Development in Multiplication

Some researchers have proposed accounts for single-digit multiplication strategies
that are modeled on the accounts for single-digit addition. In some cases, the connec-
tion is made explicitly. For example, Anghileri (1989), when discussing the early
progression from what she calls unitary counting to rhythmic counting, states: “The
development from unitary counting to rhythmic counting in groups for multiplica-
tion relates to the development in children’s strategies for adding from the counting
all procedure to the counting on procedure” (p. 374). In her account, the “transition
from one stage to the next is marked by the child’s ability to recognize that the single
word that ends the first count represents the totality of that group” (pp. 374–375).
Related abilities to move between counting and cardinal meanings are also seen as
key in the development of single-digit addition capabilities (Fuson, 1988, 1992).

In another category of hypothesis, some researchers have linked the progression
through single-digit multiplication strategies to underlying conceptual changes of
a fundamentally different sort than those described in the addition literature. For
example, Mulligan and Mitchelmore’s (1997) account is built on Fischbein et al.’s
(1985) notion of intuitive models. Following Fischbein and citing Kouba (1989),
they use the term “intuitive model” to refer to “an internal mental structure that chil-
dren impose on multiplicative situations” (p. 312) across a range of semantic struc-
tures. As shown in Table 1, Mulligan and Mitchelmore associate each of these intu-
itive models with one or more computational strategies.

Although the preceding perspectives differ markedly, they share an important
characteristic with the addition research: They link many of the most important
changes in strategy use to changes in an underlying conceptualization. In contrast,
we believe that, over the time span during which multiplication is usually taught,
the most important changes are not driven primarily by changes in how students
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conceptualize quantity; rather, these changes are driven by relatively incremental
changes to number-specific computational resources.

Table 1
Intuitive Models and Computational Strategies from Mulligan and Mitchelmore (1997)

Intuitive model Computational strategy

Direct counting Unitary counting
Repeated addition Rhythmic counting

Skip counting
Repeated adding
Additive doubling

Multiplicative operation Known multiplicative fact
Derived multiplicative fact

Our account of mechanisms is presented schematically in Figure 2. The most
important difference between Figure 2 and Figure 1 is that all of the entries in the
“conceptual structures” column are at the top. Our experience is that most students
enter formal instruction in multiplication with the addition conceptual structures
in place. This includes the single-digit conceptual structures discussed above, as
well as some understanding of the meaning of two-digit numbers. Furthermore, by
the time of formal instruction, students already possess the fundamental concep-
tual capabilities required for conceptualizing multiplication. Indeed, it has been
documented that, as early as kindergarten, children can solve simple multiplication
problems (Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993).

There are also important differences in the number-specific resources columns
of Figure 2 and Figure 1. As highlighted in Figure 2, the learning of patterns is partic-
ularly important in multiplication and may be an explicit focus of instruction. Also
important is a type of number-specific computational resource that we will refer to
as a count-by sequence. As part of instruction in single-digit multiplication, students
often learn to count rapidly by the integers 2 through 10. For example, a student
may learn to say the 4 count-by sequence: 4, 8, 12, 16, 20, 24, etc. Also, as in single-
digit addition, students learn number triads (e.g., 4 × 4 = 16). This is a more impor-
tant task in multiplication, however, because without knowledge of some multi-
plication triads, multiplication computations can be time-consuming and onerous.
In contrast, if a student does not recall a particular addition triad, it can often be
recomputed in comparatively less time.

CONTEXT, DATA SOURCES, AND RESEARCH METHODS

No single piece of evidence can support a broad stance of the sort laid out in the
preceding sections. Instead, we intend this stance to be supported by the overall
coherence of our view, as well as by its consistency with and ability to explain a
wide range of data. Our argument in this article makes use of multiple, converging
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lines of argumentation and evidence. First, we believe that much of the argument
for our view can be made without much in the way of specific supporting data. When
one considers the possibility that much of the relevant knowledge underlying
single-digit multiplication is number-specific, it becomes clear that there is a prima
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*Note: These solution methods do not appear for all numbers at once. They appear by number as
number-specific resources are acquired.



facie case to be made for this position. The preceding sections have attempted to
make some progress in this manner.

Second, we rely heavily on the work of other researchers. In what follows, we
will be systematic and explicit in connecting our analyses to the evidence and argu-
mentation of earlier publications. Third, and finally, we draw on our own empir-
ical work. Our data collection efforts were conducted as part of the Children’s Math
Worlds Project (CMW). This ongoing project combines the design of curricular
materials and professional development for teachers with a range of more traditional
research activities. In the most recent phase of this work, which has spanned
approximately 3 years, we have been developing and studying full-year curricula
for third- and fourth-grade mathematics.

As part of this phase of our project, we conducted 230 interviews with students
and completed intensive observations of classrooms. The relevant portions of our
interview data were digitized, transcribed, and coded in terms of computational
strategies used. We also tested the reliability of our scheme. In Appendix A, we
describe our data collection and analysis efforts in more detail. This includes more
discussion of the tasks and interviewing techniques employed, as well as quanti-
tative results. The quantitative results presented in Appendix A are intended only
to give the reader a sense of the relative frequency of particular strategies within
our data corpus. Because of the particular character of our data corpus, the specific
frequencies we obtained are not directly comparable with those found by earlier
studies that sampled all multiplication combinations uniformly (refer to Appendix
A for more discussion of this point). As discussed above, we will use our own data
selectively, to illustrate and add force to our arguments.

TOWARD CONSENSUS: THE CANONICAL STRATEGIES

In the case of single-digit addition, our understanding of developing conceptual
structures provides us with a natural way to categorize students’ computational
strategies. Although the situation in multiplication is somewhat different than that
for addition, we adopt a similar approach, using our understanding of the mecha-
nisms that drive strategy change in order to devise a taxonomic scheme for compu-
tational strategies for multiplication. We associate classes of strategies with the type
of number-specific computational resources that underpin those strategies. To be
more specific, we describe a set of canonical strategies that are associated with a
particular pattern of use of one or more of these types of number-specific resources.
Other strategies will then be understood as variations on those canonical types.

One type of variation involves what we call hybrids. Hybrids are combinations
of the canonical types in that a student employs more than one computational
resource. There is also within-category variation. For example, as we will see, some
types of computational strategies require a student to keep track of quantities that
change as a computation proceeds. This can pose a particular challenge, and addi-
tional resources need to be brought to bear. In particular, we will see that students
make use of multiple representational modes and techniques for employing these
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modes. Figure 3 gives an overview of our canonical strategies together with some
of the more common varieties that we have observed.

Two tables play an important role in this section. Since one of our main goals is
to build on prior literature and help work toward consensus, it is critical that we
continue to be systematic in making connections to existing literature. Figure 4 and
Table 2 together provide an overview of relevant literature. Figure 4 summarizes
the taxonomic schemes from the most relevant articles, with a comparison to our
own scheme. Table 2 provides some additional details concerning the work
described in these articles.

To select the articles described in Figure 4 and Table 2 we employed several
criteria. First, we restricted our attention to articles that included some explicit cate-
gorization of the range of computational strategies employed by students on single-
digit (integer only) tasks. This criterion rules out, for the present purposes, a substan-
tial fraction of the important research on multiplication. For example, this criterion
rules out many of the articles, mentioned above, that are primarily concerned with
semantic types and intuitive models (Bell et al., 1989; Fischbein et al., 1985; Greer,
1992; Marshall, 1995; Nesher, 1988; Reed, 1999; Schwartz, 1988; Vergnaud, 1982,
1988). Also ruled out is work that is primarily concerned with understanding the early
conceptual bases of multiplicative thinking, particularly as it develops in very young
children, prior to any formal instruction in multiplication. (Clark & Kamii, 1996;
Confrey, 1994, 1998; Steffe, 1992; Steffe & Cobb, 1998).

Among the articles that remain after this first cut, there is another important
distinction to be made. There is a substantial body of literature that is primarily
concerned with how people come to produce responses to multiplication tasks
rapidly (e.g., Ashcraft, 1992; Baroody, 1997, 1999; Campbell, 1994; Campbell &
Graham, 1985; Cooney et al., 1988; Koshmider & Ashcraft, 1991; LeFevre et al.,
1996; LeFevre & Liu, 1997; Lemaire, Barrett, Fayol, & Abdi, 1994; Lemaire, Fayol,
& Abdi, 1991; Lemaire & Siegler, 1995; Siegler, 1988; Siegler & Shipley, 1995;
Stazyk, Ashcraft, & Hamann, 1982; Steel & Funnell, 2001). A number of features
characterize this research:

• Latency (reaction time) data are collected.

• No word problems are used; only straight number tasks of the form m × n appear.

• Subjects do not use objects or external representations.

• Subjects are expected to solve individual tasks in a very short amount of time.

• Subjects are sometimes, although not always, adults.

• Research is concerned with validating computer models of various sorts, partic-
ularly models based on associative networks that connect operands with products.

Authors of many of these retrieval-focused articles essentially combine compu-
tational strategies into two large categories, retrieval and other. Because the cate-
gorization of computational strategies is so coarse in most of this research, it is not
particularly relevant to the current endeavor. However, there are a few articles from
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sequence.

Count-by 
with full 
drawing

Makes a full drawing, as for a
count-all strategy, but finds the
product by employing a count-
by sequence, pointing to each
group in the drawing: “7, 14, 21.”

Count-by 
with written 
groups

Writes a numeral for each 
group, then says the count-by
sequence while pointing to
each numeral.

Count-by 
using
fingers

Says the count-by sequence 
aloud, keeping track of the num-
ber of groups on his/her fingers:
“4, 8, 12, 16, 24.” Students may
begin with thumb, index finger,
or pinky.

Pattern-
based

New computational resources: 

Key characteristics: 

                  A number of specific patterns, such 
as N × 1 = N, N × 0 = 0, and a number of pat-
terns and techniques for 9’s. Understanding 
10’s patterns may involve new place-value 
knowledge.
Solutions are generally very rapid. One of the 
9’s techniques involves a particular type of use 
of fingers.

0’s rule, 
1’s rule, 
10’s rule

Response is rapid with no visible computation:
“One times seven is seven.”

No visible use of
fingers or drawing.

9’s finger 
technique

To multiply 9 × N, the student holds up both
hands, and puts down the N th finger, counting
from the left. The tens digit of the result is given
by the number of fingers to the left of the finger
that was put down, and the ones digit is given
by the number of fingers to the right.

Learned 
products

New computational resources: 

Key characteristics: 

                  Learned associations of pairs of 
factors with their products
Solutions are generally very rapid. No verbali-
zation except for the result.

Learned 
products

Response is rapid with no visible computation: 
“7 times 6 is 42.”

No visible use of
fingers or drawing.

Figure 3. (Continued on the next page)



this genre that do open up the “other” category, at least partly. The four bottommost
articles in Figure 4 are of this sort. The articles by LeFevre et al. (1996) and Lemaire
and Siegler (Lemaire & Siegler, 1995; Siegler, 1988) have a fairly differentiated
taxonomy and are thus unusual in this field. Cooney et al. (1988) has a less-differ-
entiated taxonomy and was selected to be representative of similar research in this
genre. The remaining top three articles listed in Figure 4 are the ones that are closest
in concern to the current work in that they all present schemes that substantially open
up the “other” category. They will thus be given the most emphasis.

As described in Table 2, the studies listed in Figure 4 differed substantially in
the populations studied, the tasks employed, and the data collected. For example,
the top three articles looked only at students solving word problems, whereas the
others looked only at students solving straight numerical tasks. In some instances,
students were given manipulatives or pencil and paper to use (e.g., Anghileri,
1989), whereas in others they were not provided with any external aids (Cooney et
al., 1988). Finally, the ages of the subjects studied differed. Lemaire and Siegler
(1995) looked only at French second graders, Anghileri (1989) looked at students
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Hybrids New computational resources: 

Key characteristics: 

                  Employs combinations of the new 
resources mentioned above and previously 
existing computational resources.
For each part of the hybrid computation, the 
observational characteristics are those asso-
ciated with the substrategy, as described in 
this table.

Uses a count-by sequence to get 
partway to the total, then count-all 
to reach the total. 
“6, 12, 18, 24, 30, 36, 
37, 38, 39, 40, 41, 42.”

Count-by + 
count-all

Starts with a learned product below
the total, then count-all (in one of 
the above ways) to reach the total.
“6 times 6 is 36. 37, 38, 39, 40, 41,
42.”

Learned
product + 
count-all

“6 times 7 is 42, plus 7 is 49, plus 
7 is 56.”

(There may be written 
components to show the 
addition.)

Learned 
product + 
additive 
calculation

One of the factors is split, so that 
the problem is decomposed into 
two parts. The two subproducts are
found using a learned product 
strategy. These are then added with
an additive calculation.

Split factor 
+ learned
product + 
additive 
calculation

Figure 3. Canonical strategies and sample variants



ages 4 through 12, and LeFevre et al. (1996) looked at adults. For these reasons,
we must expect significant differences in the types of strategies reported. In the
subsections that follow, we now present our own framework, making detailed
comparisons to prior research where appropriate.
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Figure 4. Overview of strategy taxonomies from selected articles
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Table 2
More Details on the Articles Listed in Figure 4

Data and methods Other notes

Mulligan & Tracked 70 girls through The framework was structured as a 
Mitchelmore, grades 2 and 3. At time of first, developmental progression in three 
1997 second, and third interviews, intuitive models, each of which was 

students had no instruction associated with one or more computa-
in multiplication. Students tional strategies. The intuitive models 
received no instruction were (1) direct counting, (2) repeated 
in word problems. addition, (3) multiplicative operation.

Kouba, 1989 Studied first, second, and Semantic factors in the word problem 
third graders. All tasks were the main concern. Strategies were 
were equal group word classified by “degree of abstraction,” as 
problems. well as by “use of physical objects.” 

The strategies given in Figure 4 corre-
spond to Kouba’s classification by 
degree of abstraction. Classification by 
use of physical objects employed three 
categories: (1) use as representations of 
individual elements, (2) use as tallies or 
repeated references, (3) no use.

Anghileri, Studied students ages 4–12. Multiple categorization schemes for 
1989 In all tasks, students were computational strategies were employed 

given physical objects. in the article. Some of these schemes 
They employed 6 tasks, are coarse, others more fine-grained. 
one for each of their seman- Figure 4 reports Anghileri’s more fine-
tic types. grained taxonomy. Anghileri reports a 

developmental progression that, in 
some ways, mirrors the development in 
single-digit addition.

LeFevre et al., Studied undergraduates age 18–45 
1996 years. Subjects given either 

5 or 10 seconds to solve, verbally, 
all tasks of the form m × n. 
Latency data were collected.

Lemaire & Longitudinal study of French Their central interest is in tracking 
Seigler, 1995 second graders. Students were strategy change—where and how 

interviewed at three times and strategies are used—particularly with 
were given all tasks of the form respect to the use of retrieval.
m × n.

Siegler, 1988 Studied third-grade students. Concerned with testing predictions of 
Tasks were primarily of the the “distribution of associations” 
form m × n. model, particularly with respect to the 

use of backup strategies.
Cooney et al, Studied 10 third and 10 fourth 
1988 graders. Tasks included 100 prob-

lems of the form m × n. They ob-
tained latency data and also fol-
lowed up some tasks with inter-
views. For timed tasks, students 
were not permitted to use paper 
and pencil.



COUNT-ALL

The first two classes of strategies in Figure 3 are based on resources that are, in
general, already in place at the time of instruction in multiplication. In the first
strategy, count-all, a student can be seen counting from 1 to the product as they
perform the computation. Example 1 describes an incident in which a student,
Danny,4 was presented with the task of finding the total number of children, given
that 4 children are seated at each of 3 tables. He solved this problem by first
drawing a picture, and then counting all of the children he had drawn. 

Across individuals of a wide range of capabilities, count-all strategies can be the
most time-consuming and most difficult to enact correctly when the operands are
large. Enacting a count-all computation requires that three separate counts are
coordinated. For illustration, consider the task of multiplying 3 × 4. One way to do
this is to count to the total made by counting to 4, three times. This requires that
we enact and coordinate the three counting sequences shown in Figure 5: (1) We
need to count from 1 to 3 to keep track of the number of groups; (2) we need to count
from 1 to 4 three times, to keep track of where we are within each group; and (3)
we need to count from 1 to 12, thus keeping track of the running total.5
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1 2 3 Count of the number of groups

1 2 3 4 1 2 3 4 1 2 3 4 Count of entities in a group

1 2 3 4 5 6 7 8 9 10 11 12 Count of total

Figure 5. The three coordinated counting sequences for multiplying 3 × 4

4 All student names are pseudonyms.
5 We are aware that an account of this sort hides much conceptual nuance, including some concep-

tual leaps that may be difficult for younger students.

Varieties of Count-all

Because of the need to coordinate the three separate counts in count-all, many
techniques are employed, and supplementary resources are brought to bear. For this
reason, this category of strategies is the largest and most varied part of our taxonomy.
Figure 3 lists four varieties of count-all strategies, and these represent just a sample
of the diversity that exists. Across all these varieties, a central issue is how external
media are used to support the computation. We thus divide the discussion that
follows according to the primary medium employed.



Count-all—paper-based. The use of paper as an external medium has dramatic
effects on the ability of a student to manage a count-all computation. For example,
because Danny made a drawing as a first step to multiplying 3 × 4 (see Example 1),
this essentially allowed him to enact the three counts sequentially, rather than
simultaneously. First he drew the tables, counting 1 to 3; then he drew the children,
counting from 1 to 4 three separate times; finally, he counted from 1 to 12, pointing
to each of the children he had drawn. One feature of Danny’s drawing merits
particular attention: Substantial features of the situation described in the word
problem are reflected in the drawing. It is for this reason that, in Figure 3, we refer
to this variant of count-all as count after drawing—semisituational. When students
make situational drawings of this sort, they are making use of drawing techniques
that are most likely learned outside of mathematics instruction.
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Example 1: Danny, preinterview
Task: There are 3 tables in the classroom and 4 children are seated at each table. How
many children are there altogether?
Description: Initially, Danny was unsure how to proceed. Following the suggestion
of the interviewer, he drew the situation. When the interviewer asked, “So, how many
children are there altogether?” he counted quietly without pointing, but his head moved
and he nodded a bit, as if in the direction of each drawn child.

In contrast to Danny’s solution in Example 1, some of the students we observed
used techniques for making simplified drawings. During the preinterview, Hector
made relatively pictorial drawings of the sort shown in Example 2. However,
during later interviews, as illustrated in Example 3, Hector used a drawing tech-
nique involving boxes and marks. The use of such abstracted drawings has a
number of benefits, not least of which is that it can greatly reduce the amount of
time necessary to make a drawing. Indeed, in our own data, we rarely saw students
make strongly situational drawings after the preinterview. Abstracted diagrams of
the sort seen in Example 3 appeared frequently in the CMW classrooms we
observed. We refer to this variety of count-all as count after drawing—math
drawing, as the CMW curriculum uses this term to describe these types of simpli-
fied mathematical drawings, which were strongly emphasized.

Count-all—finger-based. An alternative medium that can be used to support the
count-all strategy is the medium that consists of the student’s fingers. Example 4
presents an instance of count-all using fingers. In this example, Sam multiplied 3 × 4



by repeatedly putting up three fingers, one at a time, on his left hand. Notice that,
unlike the examples that made use of drawings, the three counts in Example 4 were
enacted simultaneously. Sam’s use of his fingers helped to make this possible; he
used his fingers to enact the within-group count, whereas the total count was kept
verbally. It is interesting to note that the count corresponding to the number of groups
was not enacted in any visible manner. There are six examples in our digital data-
base in which a student uses fingers in the execution of a count-all strategy. In all
these examples, the computation was distributed over media in the same manner as
in Example 4; fingers were used to enact the within-group count, whereas the total
count was kept verbally, and there was no visible counting of the number of groups.

Count-all—rhythmic counting. Figure 3 includes one additional variety of count-
all, called rhythmic counting. In rhythmic counting, the student counts from 1 to
the total, saying every value along the way, just as in all count-all variants. However,
as they count, the student emphasizes each value that is associated with the comple-
tion of a group. So a student multiplying 3 × 4 might say, “One two three four, five
six seven eight, nine ten eleven twelve.” 
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Example 3: Hector, midpoint 1
Task: Martin bought 4 boxes of pencils. There were 8 pencils in each box. How many
pencils did Martin buy?
Description: Hector made the diagram, then counted each tally mark from 1 to the total.

Example 2:  Hector, preinterview
Task: There are 3 tables in the classroom and 4 children are seated at each table. How
many children are there altogether?
Description: Hector initially struggled trying to count on his fingers. He kept losing
his place. Eventually, the interviewer suggested he draw a picture. Hector drew the
diagram. He counted under his breath and said that 18 was the answer. When asked
to count aloud, he counted by 2’s to 12: “2, 4, etc.”



A particular variant of rhythmic counting, rhythmic counting with fingers, is
shown in Figure 3. In this variant, the number-of-groups count is kept on the
fingers, but the within-group count is only carried by the rhythm of emphasis as
the total count is said aloud. This is most feasible when the group size is small.
Although rhythmic counting did not appear in our interview corpus, it is included
here because, as we discuss below, rhythmic counting figures prominently in the
schemes of some other researchers.

Count-all in the Research Literature

There are some differences in how count-all-like strategies have been treated
among the articles listed in Figure 4. First, among the three bottom rows of
“retrieval-focused” researchers, count-all strategies are given much less attention.
LeFevre et al. (1996) report no observation of count-all, likely because their
subjects were adults. Cooney et al. (1988) do mention observing count-all, but
they include it within a more encompassing “counting” category that places
count-all together with what we call additive calculation and count-by. Lemaire
and Siegler (1995) have a similar encompassing category that they call “repeated
addition.” Siegler (1988), however, splits out one type of strategy that he calls
“counting-sets–of-objects.” This is a subset of our count-all category that includes
only the very specific case in which tally marks are written on a sheet of paper
and counted.

Each of the top three articles in Figure 4 has a category that is close to our count-
all class of strategies. Kouba (1989) uses the name “direct representation.” Both
Anghileri (1989) and Mulligan and Mitchelmore (1997) call their respective cate-
gory “unitary counting,” and each explicitly splits out rhythmic counting. Anghileri
(1989), in particular, ascribes an important role to rhythmic counting. In her learning
progression, it plays a role that is analogous to the role played by count-on in the
addition literature.
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Example 4: Sam, preinterview
Task: There are 3 tables in the classroom and 4 children are seated at each table. How
many children are there altogether?
Description: He counted “1, 2, 3” putting up three fingers, one at a time, on his left
hand. Then he said “4, 5, 6” again putting up three fingers. Then he continued in the
same way up to 12.



As stated above, we saw rhythmic counting only rarely in CMW classrooms and
not at all in interviews. It is possible that rhythmic counting appeared in our class-
rooms in just a brief transitional stage and that we missed this brief appearance.
However, we believe that rhythmic counting really was rare in CMW classrooms,
perhaps because it did not receive formal attention. This is evidence that we must
be careful about ascribing any sort of universal importance to types of strategies
that may depend very sensitively on the details of instruction.

ADDITIVE CALCULATION

Because students have prior learning experiences relating to addition, they have
existing resources that can provide the basis of strategies that are less time-
consuming and easier to enact than count-all strategies. We call these strategies that
are based on addition-related techniques additive calculations. An instance of this
strategy is described in Example 5, wherein Ellen multiplies 3 × 4 by first adding
4 + 4 to get 8, and then 8 + 4 to get 12. This episode has features that clearly distin-
guish it from episodes of count-all. In Ellen’s computation, not every value between
1 and 12 was represented; instead, the computation jumped from 4 to 8 to 12.
Furthermore, Ellen’s written work made explicit use of addition notations.
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Example 5: Ellen, preinterview
Task: There are 3 tables in the classroom and 4 children are seated at each table. How
many children are there altogether?
Description: Ellen added two 4’s to get 8, and then added an additional 4 to get 12.

Varieties of Additive Calculation

As with count-all, there is some diversity within the additive calculation category.
Example 5 is an instance of the subtype that, in Figure 3, we refer to as repeated
addition. In repeated addition, the student performs sequential additions, each
time adding the group size onto the current value of the total.

Example 6 and Example 7 show instances of a more advanced variety of addi-
tive calculation that we call collapse groups and add. In both of these examples,
the students are working on a problem that asks them to determine how many pencils
are contained in 4 boxes, each of which contain 8 pencils. Their solutions follow
a similar pattern. They begin by adding pairs of 8s to get two 16s, which are then
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added using multicolumn addition techniques. These computations still have the
characteristics that distinguish additive calculations from count-all: not all values
between 1 and the total are represented, and standard arithmetic notations appear.
However, the pattern of represented quantities is somewhat different than what
occurs in the repeated addition subtype. If Harry or Jeremy were using repeated
addition, we would expect to see the pattern 8, 16, 24, 32 in their computations.
However, in these examples, we instead see two 16s produced and then combined.
Furthermore, 24 did not appear at all in these solutions.

Example 6: Harry, midpoint 1
Task: Martin bought 4 boxes of pencils. There were 8 pencils in each box. How many
pencils did Martin buy?
Description: Harry drew the diagram, and labeled it with the two 16’s. Then he wrote
and solved the multicolumn addition problem shown.

Example 7: Jeremy, midpoint 1
Task: Martin bought 4 boxes of pencils. There were 8 pencils in each box. How many
pencils did Martin buy?
Description: Jeremy began by writing four 8’s in a row. Then, after a brief pause, he
wrote two 16’s in multicolumn format. He then proceeded to do the multicolumn addi-
tion.
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Additive Calculations in the Research Literature

In all but one (Anghileri, 1989) of the articles in Figure 4, a category analo-
gous to our additive calculation category was either explicit or the authors could
plausibly have intended similar strategies to be included in one of their categories.
In the case of articles listed in the bottom two rows in Figure 4 (Cooney et al.,
1988; Lemaire & Siegler, 1995; Siegler, 1988), additive calculations are included
(at least, implicitly) as part of the authors’ “other” categories. The remaining three
studies in Figure 4 (Kouba, 1989; LeFevre et al., 1996; Mulligan & Mitchelmore,
1997) have categories that are in close alignment with our additive calculation
strategy. The alignment of Mulligan and Mitchelmore (1997) seems to be the best.
They have categories called “repeated adding” and “additive doubling,” which
may line up with our two subtypes, repeated addition and collapse groups and
add, although they use the phrase “repeated addition” to refer to an intuitive model,
not a computational strategy. Kouba (1989), in contrast, has a category called
“additive,” but this seems to only include our repeated addition subtype of addi-
tive calculation. 

COUNT-BY

When instruction in multiplication begins, students begin the extended task of
learning the various number-specific computational resources that can support
more efficient and accurate strategies. As discussed earlier, one important and preva-
lent collection of resources is the count-by sequences; students learn to say sequences
such as “6, 12, 18, 24, . . .” and “9, 18, 27, 36, . . .” These sequences make possible
the class of computational strategies that we refer to simply as count-by strategies.
In Example 8, we describe an episode in which a student used COUNT-BY to
multiply 8 × 4; she counted by 4’s to 32, putting up a finger on each hand to keep
track of the number of groups. 

As in count-all, it is helpful to think of the enactment of count-by as requiring
the coordination of multiple counting sequences. In the case of count-by, only two

Example 8: Linda, postinterview
Task: 8 × 4
Description: Linda counted by 4’s to 32. She said: “4, 8, 12, etc.,” putting up a finger
as she said each number. She used only her left hand, so she had to reuse some fingers.
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counting sequences must be coordinated, a reduction that greatly reduces the diffi-
culty of accurately enacting count-by strategies. The tradeoff is that a count-by
sequence must be learned for each number. This is depicted in Figure 6 for the case
of 8 × 4 (as in Figure 5, the sort of description given in this figure hides important
conceptual nuances).

4 8 12 16 20 24 28 32 Count of total

1 2 3 4 5 6 7 8 Number-of-groups count

Figure 6. The two sequences to be coordinated for multiplying 6 × 5

Varieties of Count-by

In one variant of count-by that we refer to as count-by using fingers, students kept
track of the number of iterations on their fingers, and spoke the running total aloud.
This was illustrated in Example 8. Example 9 illustrates a closely related variant,
count-by with written groups, in which a sheet of paper is used instead of fingers
to keep track of the number of groups that have been counted.

Example 9: Jeremy, preinterview
Task: 7 × 5
Description: Jeremy counted by 5’s, pointing to each of the 5’s that he had written.

Count-by in the Research Literature

Among the top four articles in Figure 4, there is substantial consensus in how the
count-by strategy is treated. Mulligan and Mitchelmore (1997) have an equivalent
category that they call “skip counting.” Anghileri (1989) calls her equivalent cate-
gory “number pattern,” and LeFevre et al. call their category “number series.”
Kouba’s (1989) “transitional counting” is very similar to our count-by category, but
it seems to include the case where a student uses count-by to get partway to the final
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result, then employs count-all to complete the computation. As discussed below,
we would treat this latter case as a hybrid. 

The situation in the retrieval-focused articles is, of course, somewhat different.
Cooney and colleagues (Cooney et al., 1988) include count-by within their large
“counting” category. Similarly, it is likely that Lemaire and Siegler (1995) would
include count-by in their “repeated-addition” category; however, no explicit mention
of skip-counting-like strategies appears in either Lemaire and Siegler or Siegler
(1988).

PATTERN-BASED

Patterns of various sorts, such as N × 1 = N and 9’s patterns, are number-specific
resources that are often learned in parallel with the count-by sequences (refer to
Figure 2). A selection of these patterns is associated with the first pattern subtypes
listed in Figure 3: the 0’s pattern, 1’s pattern, and 10’s pattern. These three
subtypes allow students to produce certain results rapidly and without visible work.
Because these pattern-based strategies are associated with very rapid responses by
students, they may be hard, in practice, to distinguish from learned product strate-
gies. Nonetheless, we believe that it makes sense to treat these strategies as part of
a separate category (from learned product) because they are based on a very
different sort of number-specific resource. These patterns have a broader range of
application than, for example, a single number triad. For multiplication by 1 there
is just a single pattern to see and learn; it is not necessary for the student to learn a
separate rule for each pair of multiplicands.

Beyond the 0’s, 1’s, and 10’s patterns, there are other patterns that students may
learn and that may support them in multiplication computations. The 9’s products
are particularly rich with useful patterns, and recognition of these patterns can reduce
the difficulty of multiplication tasks involving 9. In CMW, students first consider
9’s patterns based on thinking of 9 as 10 – 1. For example, for the product 6 × 9,
they first flash 10 fingers 6 times, then fold down 6 fingers from the last 10, leaving
4 ones. Then they raise 5 fingers to show the 5 tens, thus showing 5 tens with one
hand and 4 ones with the other.

After working through all of the related 10 – 1 patterns, students summarize these
using the finger shortcut shown in Examples 10 and 11. This shortcut works as
follows: If a student wants to multiply 9 × N, then the student holds up both hands
and puts down their Nth finger, counting from the left. The tens digit of the result
is then given by the number of fingers to the left of the finger that was put down,
and the ones digit is given by the number of fingers to the right (this works because
9 × N = 10 × N – N).

Pattern-Based Strategies in the Research Literature

For the most part, pattern-based strategies were not treated as a separate category
by the researchers listed in Figure 4. In many cases, it is likely that researchers
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intended these strategies to be included in a learned product-like category. For
example, Lemaire and Siegler (1995) and Siegler (1988) explicitly state that they
treat all instances in which there is no overt behavior by the student as belonging
to their “retrieval” category. There are two exceptions in Figure 4, however.
LeFevre et al. (1996) have a special category called “9’s rule” and Cooney and
colleagues (Cooney et al., 1988) treat pattern-based strategies involving 0 and 1 as
a separate case, worthy of its own category.

LEARNED PRODUCT

Our last primary category of strategy, learned product, is associated with a large
collection of number-specific resources: the multiplication triads. The learning of
these multiplication triads typically demands a large amount of student time and
effort; the resources are acquired bit by bit, with some triads being learned earlier
than others. Example 12 contains a brief episode involving this strategy. In that
episode, Jenna quickly writes the product, saying “I just know the answer.” 

Example 10: Jeremy, postinterview
Task: 9 × 6
Description: He held up his hands in front of him, palm up. Then he bent the pinky
of his right hand down quickly and for just a moment. Then he said, “54.”

Example 11: Charlie, postinterview
Task: 9 × 3
Description: When asked the question, he looked down at his hands for just a moment,
then said the answer, 27. He then explained as follows, holding up his hands to demon-
strate:

C: I did my nines trick, you go 1, 2, 3. Then you look at it. . . . And then there’s 2 and
then there’s 7.
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Learned Products in the Research Literature

All the article listed in Figure 4 have a category that is closely related to our
learned product category. The top three articles all give their categories a name using
“fact” in the title: Mulligan and Mitchelmore (1997) have “known multiplication
fact,” Kouba (1989) has “recalled number fact,” and Anghileri (1989) has “known
fact.” Where these researchers differ is in how they treat what Mulligan and
Mitchelmore (1997) call “derived multiplication facts.” In this strategy, the student
begins with a known “fact,” and then adds or subtracts, in some manner, to derive
a solution for the current problem. Mulligan and Mitchelmore treat this as a sepa-
rate category of strategy, but Kouba (1989) includes this in her “recalled number
facts” category. As we will discuss below, we treat these “derived multiplication
facts” as hybrid strategies.

The articles in the remaining three rows all have categories that are, once again,
quite close to our own, and all employ names with the word “retrieval.” The only
mild exception is that Lemaire and Siegler (1995) split our learned product cate-
gory into two parts, one that they call “retrieval” and a smaller category they call
“writing problem.” This strategy differs from retrieval only in that the student writes
out the two multiplicands (e.g., 8 × 4) and then gives the answer orally, rather than
just answering orally. In our own scheme, this type of difference would be treated
as a within-category variance associated with differing uses of media.

We conclude this section with a comment concerning our choice of the term
learned product for this category. We feel that none of the terms that have been
employed in the literature for this category—terms that include “fact” or
“retrieval”—do justice to this category. These terms all suggest rote lookup, as if
from a mental table, and we believe that this is overly simplistic, even when
responses are given extremely rapidly by students. For example, it certainly misses
much to say that 2 × 3 = 6 and 6 × 10 = 60 are “just memorized.” Each of these
multiplication triads will have a different experiential basis, contributing to a
unique learning history. Students’ understanding of 2 × 3 = 6, for example, may be
rooted in experiences of visual patterns (��� ���) or in prior learning of addi-

Example 12: Jenna, midpoint
Task: 7 × 5
Description: Jenna read the problem and then just wrote the answer. When prompted,
she explained her solution as follows:

J: I know what this is.
I: How did you get 35? Can you tell me how?
J: I just know that answer.
I: Did you just memorize it?
J: Yeah.
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tion. We will say more about this issue below in our discussion of “Where the
computational resources merge.”

HYBRIDS

Hybrid strategies are based on combinations of the strategies above. In principle,
there is a moderately large number of possible ways that existing strategies can be
composed to form hybrid strategies. However, as discussed below, we observed only
some of these possibilities.

Varieties of Hybrids

The most common hybrids we observed used count-by or learned product tech-
niques to get partway to the result, and then used count-all or additive calculation
to get the rest of the way. Two episodes involving hybrid strategies are described
in Example 13 and Example 14. Example 13 is an instance of learned product +
count-all. In that episode, Jenna multiplied 7 × 6 by starting from 6 × 6 = 36, and
then counting from 37 to 42 on her fingers. In Example 14, Jeanne also multiplied
7 × 6 by starting from 6 × 6 = 36, but she added on the last multiple of 6 using addi-
tive resources. We would thus describe this as an instance of learned product + addi-
tive calculation.

Example 13: Jenna, midpoint 2
Task: 7 × 6
Description: Jenna said, “36,” and then counted from 37 to 42 on her fingers. She
explained, “I know that 6 × 6 = 36 so I added 6 more on my fingers.”

Example 14: Jeanne, postinterview
Task: John had 3 crayons. He decided that he wanted some more crayons, so he went
to the store and bought 7 boxes of crayons. There were 6 crayons in each box. How
many crayons did John have altogether?
Description: Jeanne has 45 written as her answer. When asked to explain how she
got this answer, she stated that 7 × 6 is 42, and you add 3 more to get 45. The inter-
viewer then asked how she knows that seven 6’s are 42. Jeanne said, “Because 6 time
6 is 36 and plus another 6 is 42.”



375Bruce Sherin and Karen Fuson

We also observed hybrid strategies in which students combined strategies in ways
other than using one strategy to get partway to the result, then another to get the
rest of the way. As an example, Figure 3 includes a variety of hybrid that we call
split factor + learned product + additive calculation. In this type of strategy,
students partitioned one of the two multiplicands into two parts, computed the
product for each of these parts, and then added the resulting products together. This
is how Jane multiplied 7 × 8 in Example 15. She used retrieval to multiply 7 × 4,
obtaining 28, then she added 28 to 28 to get 56.

Example 15: Jane, postinterview
Task: The walls of the rooms were covered in beautiful tiles. There were 7 rows and
8 columns of tile on each wall. How many tiles were there in all?
Description: Jane explained that she had memorized that 7 × 4 is 28, and she added
28 and 28 to get 56 (apparently using multicolumn addition done in her head).

Hybrids in the Research Literature

Although none of the articles listed in Figure 4 included a general discussion of
hybrids, some specific hybrids did appear. In some cases, these were just mentioned
in passing and included in a larger category; in other cases, they were treated as a
separate category. The most common hybrid to appear in the literature is what has
been referred to as “derived facts.” As we discussed earlier, some researchers
treated derived facts as part of a learned-product-like category (Kouba, 1989),
whereas others had a separate category (Cooney et al., 1988; LeFevre et al., 1996;
Mulligan & Mitchelmore, 1997). 

Where the Computational Resources Merge

In presenting our category scheme, we described our categories as separate, each
based on a specific type of computational resource. However, as we have suggested,
this assumption of the separability of computational resources becomes increasingly
problematic as students progress. This observation has direct implications for our
category scheme; it means that, as students learn more, individual instances of
computational behavior no longer belong solely to one of our categories.



This type of integration becomes more pervasive later in the instructional cycle.
One way that this was manifested in our observations was that, following the
posing of a problem, there would be a pause of moderate length (a few seconds)
before the student stated an answer. For illustration, consider Examples 17 and 18.
In the first example, Shanta was given the task of multiplying 4 × 7. After a pause
of about 3 seconds, she stated the answer, 28. When asked how she found the answer,
she explained that she counted by 4’s. Similarly, when given the same problem, Jane
also paused for a few seconds before giving a response. She explained that she had
found the result by adding 14 and 14. Once again, episodes of this sort pose a chal-
lenge for categorization. The answers are produced moderately quickly, after about
3 seconds in each case. This suggests that learned product may be an appropriate
coding. However, the students reported more extended cognitive activity. For
example, Shanta stated that she found the answer by counting by 4’s. 

The difference between interpretations here is a slim one. As students progress
to expertise, there may not be much difference between counting by 4’s very
quickly and retrieving a result. The particular strategies also may become abbre-
viated so that when initiated, they also stimulate a learned product, which then may
or may not be verified by completing the strategy. Similar points have been made
elsewhere in the research literature. For example, Ter Heege (1985) stated that
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The merging of number-specific computational resources is evident even very
early in the learning process, particularly when small numbers are involved. For
illustration, consider the episode in Example 16. In this episode, Cayla was given
the task of multiplying 2 × 3, and she responded, relatively quickly, with an answer
of 6. Then, when prompted to explain, she explained that “you could add three plus
three.” The point is that it is unclear how to categorize an episode of this sort in terms
of our taxonomy. The initial answer was produced very quickly, which suggests
that this is an episode of learned product. However, in her explanation, Cayla said
that the answer could be found by adding 3 + 3. Indeed, it is not implausible that
an answer could be produced quite quickly using this latter strategy. In our view,
the appropriate way to understand episodes of this sort is that, in the territory of small
numbers, the various computational resources have already become integrated for
Cayla, so it simply does not make sense to differentiate among these possibilities. 

Example 16: Cayla, preinterview
Task: 2 × 3 =
Description: Cayla had 3 + 3 = 6 written on her paper. When prompted to explain,
she said that her previous year’s teacher taught her how to do problems of this sort:
“Last year my teacher, he.... In my class we had third and second and he taught both
grades the same stuff. He said two times three you could add 3 + 3 two times and the
answer would be six. That’s how he taught us.”
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students can become so skilled “that the border between ‘figure out’ and ‘know by
heart’ seems to blur” (p. 386). Similarly, Baroody (1997) argued against a clean
distinction between retrieval-related resources and other resources that underlie
multiplication. He argued that “the representation of basic number combinations
is not a distinct aspect of long-term memory but an integral aspect of the structured
framework for general arithmetic knowledge” (p. 6).

This observation concerning the merging of resources is important, not only
because it suggests some theoretical limitations of the categorization scheme
presented in this article, but also because it has quite general implications for how
we must understand the nature of “basic skills,” such as the ability to “recall” multi-
plication facts. We must not assume that the end products of learning are memo-
rized count-by sequences or straightforwardly internalized versions of the multi-
plication table. Although it may occasionally be productive to understand instruction
as directed at helping students to acquire these relatively well-defined cultural tools,
we must be careful not to presume that there is little complexity, individuality, or
variability in the end products of understanding. As was mentioned earlier, the termi-
nology used by many to discuss this learning task (“memorizing multiplication
facts”) oversimplifies this task and thus may mis-direct learning activity.

DIMENSIONS OF VARIABILITY

In the preceding section, we presented a taxonomic scheme of computational
strategies that have been reported by other researchers and that we observed in our

Example 17: Shanta, postinterview
Task: 4 × 7 =
Description: When asked the question, she paused for between 2 and 3 seconds then
said, “28.” The interviewer then asked her how she got that answer.

I: How did you figure out your answer was 28.
F: 4 × 7? Well I counted, like, by 4’s.

Example 18: Jane, postinterview
Task: 4 × 7 =
Description: When asked the question, Jane paused for about 3 seconds and then said
“28.” During the pause, her lips move slightly as if saying something to herself. The
interviewer then asked her how she got that answer.

E: How did you know 4 × 7 was 28?
K: Well I did 14 plus 14.
E: And you do that in your head?
K: Uh-huh.
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own work. With this taxonomic scheme now available, we use it to overview how
strategy use by students varies across contexts and how it changes over time with
instruction.

Learning Progressions in Broad Sweep

Throughout this article, we have hypothesized that the learning of number-
specific computational resources is the primary driver of strategy change in single-
digit multiplication. This hypothesis leads us to have some specific expectations
regarding dimensions of variability in strategy use. First, for a given individual, we
do not expect across-the-board development in strategy use. Instead, at any given
time, the strategy that a child uses will depend on the values of the operands. Second,
because the learning of number-specific resources is very sensitive to instructional
emphasis, we are led to expect significant variation in learning progressions across
classroom contexts.

Nonetheless, there are some generalizations to be made, both within our project
and across the literature. The accounts in the research literature are, in broad
outline, what one would expect; researchers describe a general movement from the
left side to the right side of Figure 4. Students begin with strategies in the vicinity
of count-all and progress toward increasing use of learned-product-like strategies.
For example, Kouba (1989), in her interviews of students in first though third grades,
saw a progression from what she called “direct representation” to “recalled number
facts.” Similarly, Mulligan and Mitchelmore (1997) documented a steady progres-
sion from their “unitary counting” strategy through “repeated addition” to “multi-
plicative calculation.” Although we did not set out to study systematically how the
frequency of strategy use changed over time, to the extent that we can draw conclu-
sions, our own data seem to be consistent with this broad developmental outline
(refer to Figure 8 in Appendix A). 

Variation in Strategy Use Across Problem Contexts

Having looked at the broad sweep of changes in strategy use, we now look at vari-
ability in strategy use at a given time during the instructional sequence. Research
from the retrieval-focused genre has documented, in a quantitative manner, some
broad measures of the variability of strategy use by individuals. It has been shown
that children use diverse strategies throughout their learning period and that adults
continue to use multiple strategies (Brownell & Carper, 1943; Jerman, 1970; LeFevre
et al., 1996). Lemaire and Siegler (1995), using their coarse-grained taxonomic
scheme (see Figure 4), found that the number of strategies employed by French
second graders began at 3.1, increased to 3.7, and then decreased to 2.4. Similarly,
Anghileri (1989) found that only 7 out of the 90 students studied employed the same
strategy to solve all of the six tasks that she administered. Furthermore, 78% of the
remaining students who solved all six of her tasks used at least three different strate-
gies. Looking at adults, LeFevre et al. (1996) found, in two separate experiments,
that subjects used nonretrieval strategies on 17% and 32% of trials.
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Although our conditions were different than those in the studies noted above, we
found variability on a similar order of magnitude. During a given interview, indi-
vidual students tended to use multiple strategies. Even during the final interview,
they employed an average of 3.0 different canonical strategy types. Although
values of this sort are very sensitive to the granularity of the coding scheme (and
to difficulties in coding of the sort mentioned above), they can give a sense of the
variability in individual student’s use of strategies.

Variation in Strategy Use With Operand Values

Next we discuss how strategy use varies depending on the numbers that appear
in a task. To begin, the retrieval-focused literature has identified a number of
“structural features” that seem to have importance for student solutions in single-
digit multiplication:

1. Problem-size effect. Tasks with smaller operands are easier for students and are
more likely to be solved by learned product (e.g., Campbell & Graham, 1985;
LeFevre et al., 1996; Miller, Perlmutter, & Keating, 1984).

2. The ties effect. Tasks involving ties (i.e., tasks in which both multiplicands are
the same, as in 6 × 6) are easier for students than would be expected given the
problem-size effect and are more likely to be solved by learned product (e.g.,
Campbell & Graham, 1985; LeFevre et al., 1996; Miller et al., 1984).

3. 5-operand advantage. Tasks with 5 as an operand are easier for students than
one would expect given their problem-size and are more likely to be solved by
learned product (e.g., Campbell, 1994; Campbell & Graham, 1985; LeFevre et
al., 1996; Miller et al., 1984).

Some of the studies listed in Figure 4 attempted to map out, in terms of their own
category schemes, how strategy use depends on structural features of this sort.
Lemaire and Siegler (1995) did this for a strict version of the problem-size effect.
In their analysis, they divided the problems given into 4 categories: easy (product
< 8), relatively easy (product 9–18), relatively hard (20–36) and hard (36–81). At
the time of their first interview session, these situations existed:

• Retrieval dominated for the easiest problems.

• Repeated addition and retrieval dominated for the relatively easy problems.

• Repeated addition and “I don’t know” were common for the relatively hard
problems.

• “I don’t know” was most common on the hardest problems.

In contrast, by the third interview session, retrieval was the most common
strategy across all the categories of problems. Steel and Funnell (2001) docu-
mented a similar pattern in the use of retrieval. When our data are broken out
in this manner, we also see differences in strategy use on “easy” and “hard”
problems during both the pre- and postinterviews (see Figures 9 and 10 in
Appendix A).
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However, an analysis that looks only at product size misses many of the impor-
tant details concerning the dependence of strategy use on multiplicand values,
including the possibility that students may tend to use different strategies on ties
and 5-operand tasks. Here, the existing literature is somewhat sparse; there have
not been systematic attempts to map, in detail, how children’s strategy use varies
across all multiplicand values. However, LeFevre et al. (1996) present relevant data
for adults. In brief they found that—

• for tasks involving 0 or 1 as operands, the only methods reported were “retrieval”
and “rule.”

• “repeated addition” was used primarily for problems with 2 as an operand.

• “number series” (count-by) was used primarily on problems with 3 or 5 as an
operand.

• the majority of uses of “derived fact” were on problems with a product greater
than 40.

These brief results suggest more complexity in how strategy use depends on
operand than is suggested by the structural features listed above, and we must expect
more complex dependence in children, particularly during the time that the students
are engaged in the learning of new computational resources. 

Issues of Universality Revisited

Figure 7 draws together a rough map of learning progressions that describes what
we saw in our own classrooms and that is consistent with what we know from prior
research (in contrast to Figure 2, Figure 7 attempts to capture more of the nonlin-
earity of the learning progression). How universal is the progression described in
Figure 7? Any answer to this question must necessarily be speculative. Nonetheless,
in this section, we draw together our best guesses concerning how this learning
progression may depend on the particularities of classroom and cultural contexts.

We have argued that any learning progression in multiplication strategy use will
depend, in a sensitive manner, on the nature of instruction. Nevertheless, there are
some reasons to expect rather substantial uniformities across instructional contexts.
This is true, first, because there are a number of constraints on strategy develop-
ment that operate across many contexts in which multiplication is learned. For
example, there are some broad cognitive constraints, such as the size of working
memory, that strongly constrain the range of computational strategies that are
feasible, and there are significant uniformities in the notational systems used across
classrooms and context. Furthermore, across classrooms and cultural contexts,
there are uniformities in instructional approach that go beyond these constraints.
For example, these constraints do not require the teaching of multiplication triads,
yet multiplication triads are the focus of instructional attention across a wide range
of classroom and cultural contexts.

With these thoughts in mind, Table 3 draws together some of our best guesses
about the universality of our scheme and learning progressions. For each of the
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strategy types, this table describes what we believe will be nearly universal across
cultures and context, what we believe will be somewhat culturally dependent, and
what we believe will depend strongly on features that are likely to vary across class-
room contexts. As stated in Table 3, we expect the use of count-all and additive
calculation strategies to be fairly universal, as long as students have had prior instruc-

C
o

u
n

t-
al

l

Entry Later

A
d

d
it

iv
e 

ca
lc

u
la

ti
o

n
C

o
u

n
t-

b
y

P
at

te
rn

-
b

as
ed

L
ea

rn
ed

 
p

ro
d

u
ct

s
H

yb
ri

d
s

S
om

e 
sm

al
l 

m
ul

tip
lic

at
io

n 
tr

ia
ds

 k
no

w
n 

ea
rly

G
ra

du
al

 le
ar

ni
ng

 
of

 m
ul

tip
lic

at
io

n 
tr

ia
ds

; d
ou

bl
es

, 
sm

al
le

r 
nu

m
be

rs
, 

le
ar

ne
d 

ea
rli

er

6’
s,

 7
’s

, a
nd

 8
’s

 
le

ar
ne

d 
la

te
st

C
om

pu
ta

tio
na

l r
es

ou
rc

es
 m

er
ge

 in
to

 r
ic

h 
kn

ow
le

dg
e 

of
 m

ul
tip

lic
at

iv
e 

st
ru

ct
ur

e 
of

 in
te

ge
rs

 ≤
 8

1.
S

tr
at

eg
ie

s 
be

co
m

e 
di

ffi
cu

lt 
to

 d
iff

er
en

tia
te

, p
ar

tic
ul

ar
ly

 fo
r 

sm
al

le
r 

m
ul

tip
lic

an
ds

.

S
ta

nd
ar

di
ze

d 
dr

aw
in

g 
te

ch
ni

qu
es

 
ar

e 
st

an
da

rd
iz

ed
 

fin
ge

r 
te

ch
ni

qu
es

M
ay

 c
on

tin
ue

 
to

 u
se

 o
n 

w
or

d 
pr

ob
le

m
s 

be
yo

nd
 u

se
 

on
 n

um
be

r 
pr

ob
le

m
s

S
om

e 
te

ch
ni

qu
es

 
m

ay
 b

e 
de

ve
lo

pe
d 

an
d 

us
ed

 
re

pe
at

ed
ly

A
dd

iti
on

 c
on

-
ce

pt
ua

l s
tr

uc
-

tu
re

s 
in

 p
la

ce
.

A
llo

w
s 

so
lv

in
g

of
 m

ul
tip

lic
a-

tio
n 

ta
sk

s 
w

ith
co

un
t-

al
l.

S
om

e 
ca

pa
bi

li-
tie

s 
in

 p
la

ce
.

R
ep

re
se

nt
 a

nd
so

lv
e 

us
in

g 
ad

di
-

tio
n 

re
so

ur
ce

s:
m

 ×
 g

 =
 g

 +
 g

 +
 

g 
+

 g

U
se

 a
s 

a 
di

ffe
re

nt
ia

bl
e 

st
ra

te
gy

 fa
de

s 
fo

r 
sm

al
le

r 
nu

m
be

rs

U
se

 a
s 

a 
di

ffe
re

nt
ia

bl
e 

st
ra

te
gy

 fa
de

s

U
se

 o
f 

m
ul

tip
lic

at
io

n 
tr

ia
ds

 a
nd

 
co

un
t-

by
 

se
qu

en
ce

s 
w

ith
 c

ou
nt

-a
ll 

an
d 

ad
di

tiv
e 

ca
lc

ul
at

io
ns

In
cr

ea
si

ng
 

kn
ow

le
dg

e 
of

 
co

un
t-

by
 

se
qu

en
ce

s

S
om

e 
se

-
qu

en
ce

s
(2

, 5
, 1

0)
kn

ow
n 

as
 a

m
ea

ns
 o

f f
as

t
co

un
tin

g.

U
se

 a
s 

a 
di

ffe
re

nt
ia

bl
e 

st
ra

te
gy

 fa
de

s

In
cr

ea
si

ng
 

kn
ow

le
dg

e 
of

 p
at

te
rn

s,
 

9’
s 

in
 

pa
rt

ic
ul

ar

P
at

te
rn

s 
fo

r
0,

 1
, 5

, 1
0

kn
ow

n 
or

in
du

ce
d

ea
rly

Figure 7. A rough map of the learning progression
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Table 3
Conclusions About the Universality of Our Taxonomy and Progression

Strongly context
Strategy Nearly universal Culturally dependent dependence

Count-all When given the oppor- Drawing conventions Students may use very 
tunity, students who have will affect types of draw- specific drawing and 
had prior instruction in ings. There will be vari- finger counting tech-
addition will invent some ation across cultures in niques that are prac-
varieties. conventional ways that ticed in the classroom 

fingers are used for or learned in some 
counting. homes.

Additive When given the opportu- There will be variability Students may learn and 
calculation nity, students who have across cultures associated practice particular 

had prior instruction in with cultural variation in techniques in some 
addition will invent some addition notations and classroom contexts.
varieties. techniques

Count-by Some sequences may be The learning of count- Use is strongly depen-
discovered and practiced by sequences or tables dent on classroom 
independently by students, may be more frequent learning and individual 
but use will be limited in some cultures. The practice of the count-
without formal classroom structure of number by sequences.
attention. words affects which The order in which 
The base system used count-by sequences count-by sequences are 
has implications for which are easier to learn. learned, and relation-
sequences are easier to ships taught between 
learn. (10’s, 5’s, and 9’s them, may vary across 
have simple patterns.) instructional contexts.

Pattern- Induction of 0 and 1-based Explicit instruction in The learning of some 
based patterns by students certain rules or patterns pattern-based strategies

should be universal. 5 and may be more traditional will be strongly depen-
10 patterns should be and frequent in some dent on explicit class-
universal across cultures cultures. room attention. For 
that employ base 10. example, 9’s pattern-

based strategies may 
be much more likely to 
appear if they are an 
explicit focus in the 
classroom.

Learned Students may incidentally The learning of pair- Learning of number 
product learn some pair-product product associations triads is strongly de-

associations, but use will may be more or pendent on classroom 
be limited without formal less traditional in learning and practice. 
classroom attention or some cultures. The sequence in which 
out-of-school experience. pair-product associa-
The base system used has tions are learned may 
implications for which vary across instruc-
pair-product associations tional contexts. 
are easier to learn. Thus, 
there are some learning 
sequences that are univer-
sally more sensible than 
others.



tion in addition and they are given the opportunity to employ these strategies.
However, we do expect significant cultural and classroom variation in the specific
subtechniques that are employed. 

In contrast, the use of count-by and learned product strategies is somewhat more
dependent on features of the classroom context. Students may induce some
count-by sequences on their own or they may learn them in the context of addi-
tion instruction (e.g., the sequences for 2 and 5). But the learning of other count-
by sequences (or tables) likely requires explicit classroom attention, and this class-
room attention may be more or less conventional across cultural contexts.
Similarly, students may learn multiplication triads for some small numbers on their
own, but broad learning of multiplication triads requires substantial effort. Where
students are taught count-by sequences and number triads, there are constraints
that make some instructional sequences more sensible than others. For example,
because we employ a base-10 system, the 5 count-by sequence can be learned
comparatively rapidly; thus, it is sensible to teach this sequence early in the
instructional cycle.

The story for pattern-based strategies is mixed. The pattern-based strategies
involving 0 and 1 should be induced, nearly universally, by students; the associ-
ated patterns do not even depend on the use of base 10. Similarly, we expect the
use of pattern-based strategies with 5’s and 10’s to be fairly universal across
cultures that employ base 10. The use of other pattern-based strategies may depend
more sensitively on details of instruction, even though the patterns themselves are
essentially determined by our use of base 10. For example, it is less likely that
students will recognize patterns in multiples of 9’s if these are not addressed
instructionally.

Finally, the use of learned product by students, across a wide range of multipli-
cands, requires explicit instructional attention. As stated above, students may learn
some multiplication triads on their own, but broad learning of multiplication triads
is likely to be dependent on substantial instructional focus. Thus, broadly speaking,
classrooms and cultures that mobilize organized and sustained efforts for such
learning will be more successful.

SUMMARY AND CONCLUSION

The purpose of this article was to attempt to work toward consensus on a
taxonomy of strategies for single-digit multiplication. Our goal was to present a
scheme that is fully fleshed out and that leaves little room for misunderstanding.
In addition, we wanted to give the reader a sense for the range of variability. For
these reasons, we presented and discussed numerous examples, and we frequently
returned to the research literature to make explicit comparisons.

There are some important respects in which the stance we adopted differs from
that of previous work. Our taxonomy of strategies is determined by an understanding
of the mechanisms that govern strategy development. For the particular case of
single-digit multiplication, we contended that the primary mechanism is the incre-
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mental appropriation, by students, of number-specific computational resources. This
stance had major implications for our larger task of understanding the development
of multiplication strategies. We were led to expect operand-dependence of strategy
use at all stages of learning, even into adulthood. Our stance implied that strategies,
as well as learning progressions through strategies, are sensitively dependent on
certain details of instruction. Additionally, the boundaries between categories
become increasingly fuzzy over time, because computational resources cease to be
separable.

As we discussed earlier, no single piece of evidence can support a broad stance
of this sort. Instead, we intend this stance to be supported by the overall coherence
of this view, as well as by its consistency with and ability to explain a wide range
of data. Here, we summarize the arguments and evidence that can be drawn from
the presentation in the earlier parts of this article.

First, much of our argument was made without specific supporting data. We
believe it is manifestly clear that at least some of the relevant knowledge is number-
specific. Some classes of strategies are, by their very nature, specific to operand
value. For example, some of the pattern-based strategies only work when 9 is an
operand. Similarly, some variants of strategies, such as certain finger-counting tech-
niques, only work for a small range of operand values. Further adding to this prima
facie case is the fact that, in order for some of our classes of strategies to work, a
child must acquire supporting number-specific knowledge. For example, the count-
by strategy requires that the student acquire the count-by sequences for each
operand. And learned product requires that specific number triads are learned. No
across-the-board conceptual development can obviate the need for the learning of
these number-specific computational resources.

Following from these observations, a prima facie case can also be made for some
amount of sensitivity to instruction. Without explicit instructional attention, it is
unlikely that children would learn most of the single-digit number triads or that they
would learn the count-by sequences. Thus, the appearance of these strategies likely
requires this instructional attention.

In addition to this prima facie case for our view, there is also a variety of empir-
ical support spread throughout this article. This support includes the following obser-
vations:

• Dependence of strategy use on operand value. We presented evidence that the
strategy employed depends on operand values. 

• Variability in strategy use persists through instruction and into adulthood.
Following instruction, students continue to use several strategies. Still more
dramatically, adults continue to use different strategies, depending on operand
values.

• Diversity of strategy variants. The sheer diversity and nature of the strategies
observed constitute evidence for our stance. It is not simply the case that the selec-
tion of strategies depends on operand values. As we stated just above, we
observed strategy variants that developed for particular tasks, with particular
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operand values. This suggests a richer texture to the learning than could be
explained by an across-the-board conceptual shift.

• Instructional sensitivity. We stated above that a prima facie case can be made for
instructional dependence. We also believe that we have seen the beginnings of
empirical evidence for this dependence. In particular, there were idiosyncrasies
in our data corpus that can be plausibly tied to features of CMW. This included
differences in strategy use between our observations and those of other
researchers.

• The merging of computational resources. We presented several examples that we
argued were intrinsically ambiguous—they could not be placed within any of the
sort of categories of computational strategies that are discussed in the literature.
Within our framework, this particular variety of ambiguity was expected, since
strategy use depends on a moderately large number of interrelated number-
specific resources.

Again, no single category of evidence is the linchpin in the argument for our view.
Rather, the support comes from the broad consistency of our stance with these obser-
vations.

Instructional Implications

There is a temptation for us, as researchers, to want to discover universal progres-
sions in learning that are driven by deep changes in conceptual structure. The very
nature of mathematics makes it seem particularly suited to such an approach and,
to be sure, there are cases in which these discoveries are there to be found. However,
there are parts of mathematics learning that, although important and complex, are
driven by more incremental mechanisms. We have argued that this is true for the
learning of single-digit multiplication.

We must be careful, however, in how we understand the instructional implica-
tions of this claim. We have essentially argued that the development of strategy use
in multiplication is not driven by central conceptual developments. But it would
be a mistake to take this as implying that the learning of multiplication need only
be based on repeated practice with isolated facts. Our claim suggests that we stake
out a middle ground. Students require help to acquire number-specific computa-
tional resources, but these resources must not be thought of as consisting of a collec-
tion of isolated “facts.” This point was emphasized, above, when we discussed the
increased merging of computational resources with learning. Based on the obser-
vations reported there, we argued that it is not appropriate to think of the end prod-
ucts of learning as a straightforwardly internalized version of the multiplication table,
consisting of individual and separate cells.

Taken as a whole, this suggests that we cannot give up on practice of a certain
sort; students must have experience working with specific operands. But it also
suggests that this practice will have its greatest effect when “facts” are not treated
in isolation, and when practice on number triads follows, and is continually linked
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to, meaningful examination of patterns and strategies. Practice must be done in such
a way that it helps students become familiar with, and continues to support student
understanding of, the patterns and structure across computational resources, so that
each child can form a rich network of number-specific resources.

These conclusions point to the need for some specific varieties of future work in
order to improve pedagogy in this arena. We must work to determine what compu-
tational resources students should acquire, and how they can best acquire them. This
suggests relatively focused questions, such as which patterns are powerful enough
that they deserve instructional effort. But we may also consider some more radical
restructuring of instruction. For example, in recent iterations of CMW, we have
explored the possibility of teaching multiplication and division together. Our belief
is that this approach can help students get a handle on the rich network of multi-
plicative structure of the integers less than or equal to 81. In our view, this is the
sort of pedagogical direction suggested by the analysis presented in this article.
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APPENDIX A

Additional Detail on the Empirical Work

In this appendix, we provide details concerning the context and scope of our
empirical work. We briefly describe the larger project of which this was a part, and
we overview our data collection and analysis techniques.

Context: The Children’s Math Worlds Project (CMW)

Our data collection efforts were conducted as part of one phase of the Children’s
Math Worlds Project (CMW), during which we worked to develop full-year
curricula for third- and fourth-grade mathematics. The topics covered in these
curricula include the usual grade-level topics, such as single-digit multiplication and
division, as well as some topics that are not usually addressed until later years. There
is a strong emphasis on fostering classroom discourse around mathematics; students
are encouraged to develop and share their own strategies, and drawn representa-
tions are particularly valued. However, this focus on discourse is not done at the
expense of grade-level mastery. Patterns for all factors are discussed, and students
learn fundamental strategies such as count-by.

Data Collection

During this phase of the CMW project, we have worked closely with a number
of classrooms and engaged in a range of data-collection activities, including teacher
interviews, student interviews, written assessments, and frequent classroom obser-
vations. In this article, we have drawn examples from the interviews we conducted,
all of which were videotaped. However, our conclusions here were greatly informed
by the full range of our experience in classrooms, particularly by the detailed
ethnographic work by members of our team. 

Table 4 is an overview of the interview data collection on which we drew in our
study of single-digit strategies for multiplication. As described in this table, we
conducted our first interviews near the end of Year 1 of this phase of the project.
Thirty-seven interviews were conducted with students in two classrooms. With
regard to our study of computational strategies, these first interviews allowed us to
refine our interviewing strategies.

During Year 2, we engaged in our most extensive and systematic data collection
related to single-digit computational strategies. We interviewed third-grade CMW
students at the start of the year, at two midpoints during a unit on multiplication,
and then after the multiplication unit. Finally, during Year 3, we interviewed a selec-
tion of fourth graders at the start of the year. For the purposes of the current work,
these last interviews allowed us to test the reliability and generalizability of cate-
gories we had developed from our analysis of the previous year’s data.

Two classrooms from the Year 2 data corpus provided a sufficient range of exam-
ples to illustrate our classification, and our examples were all drawn from these class-
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rooms. Teachers TD and NQ6 taught in public schools that differed dramatically in
the makeup of their student bodies. TD’s classroom was in a suburban school that
was 55% White and 31% Asian, with the remainder being Black and Hispanic.
Furthermore, 14% of students were from low-income families, and 14% were
reported as having limited English proficiency. NQ’s classroom was in an urban
school with a student population that was 53% Black, 43% Hispanic, 2% White,
and 1% Asian. Ninety-two percent of students were reported as low income, and
30% as possessing limited English proficiency.

Table 5 provides a breakdown of the interviews conducted with students in TD’s
and NQ’s classrooms. We attempted to interview all the students in both classes at
the start of the year and after the multiplication unit. However, NQ declined to have
us conduct postinterviews because of time pressures at the school. A selected
group of students in each classroom were also interviewed at two midpoints during
the multiplication unit.

Table 5
Interviews Conducted in the Classrooms of TD and NQ

Pre Midpoint 1 Midpoint 2 Post Total

NQ 22 4 3 0 29
TD 12 4 4 15 35
Total 34 8 7 15 64

Interviewing Tasks and Techniques

In the interviews mentioned above, our goals with respect to computational strate-
gies were intentionally broad. As much as possible, we wanted to be able to see the
full range of diversity of computational strategies. Furthermore, we wanted to under-
stand as much as possible about how each individual strategy worked; for example,

6 TD and NQ are abbreviations of pseudonyms, not of the teachers’ true names.

Table 4
Overview of Student Interview Data Collection Relevant to Single-digit Multiplication
Strategies

Year Grade When? No. of classes No. of inte
views

1 3 End of year 1 22
4 End of year 1 15

2 3 Start of year 4 69
3 Midpoint 1 2 8
3 Midpoint 2 2 7
3 After instruction 3 45

3 4 Start of year 3 64
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we wanted to see what types of drawings students made and how they made these
drawings, and we wanted to see how students used their fingers in computations. 

This interest in mapping the “flora and fauna” of student strategies placed diffi-
cult demands on our interview data collection. Ideally, we would have given all of
the single-digit multiplication combinations to every student, on each type of word
problem, and at many points of time. However, pragmatically, it was not possible
for us to cross all possible number combinations with all types of word problems.
Some studies with adults administer all possible number combinations to individual
subjects, but they do not employ word problems, and they give subjects a maximum
time limit on each question of perhaps 5 or 10 seconds (e.g., LeFevre et al., 1996).
In contrast, because we were interested in understanding, in full detail, how subjects
execute strategies, including very laborious strategies, we often needed to give
students many minutes to solve a problem. This was particularly an issue during
early interviews, when students used less efficient strategies.

The situation was complicated still further by the fact that our one-on-one inter-
view time had to serve multiple needs. We had other research concerns operating
in parallel, including research concerned with semantic types. Furthermore, because
this work was conducted during an early iteration in the design of our curricular
materials, we used our interviews to help us understand student difficulties, so that
we could refine our ongoing instruction.

The result of these multiple desires and constraints is that it was not possible for
us to cover all possible dimensions during every interview. Instead, we used our
evolving understanding to sample widely across the range of phenomena of interest.
The result is that some particular types of quantitative analysis were not accessible
to us. For example, although it was possible for us to compute the frequency with
which students employed certain strategies, these frequencies are not directly
comparable with those found by earlier studies that sampled all multiplication
combinations uniformly. However, our method of broad sampling has put us in a
position to understand, in qualitative detail, the range of computational strategies
employed by students. In our view, this is precisely what is needed at the current
time. As we have discussed, there is already a substantial body of experimental
studies in which tens or even hundreds of subjects solve all the single-digit multi-
plication combinations. But, in order to get this coverage, these studies suppress
detail, and they do not look at word problems (e.g., LeFevre et al., 1996; LeFevre
& Morris, 1999; Lemaire et al., 1991; Lemaire & Siegler, 1995; Siegler, 1988). 

Furthermore, there are some reasons that CMW classrooms provide a particularly
appropriate context for this work. Although CMW works hard to help all students
develop efficient strategies, student strategies are certainly not suppressed. Indeed,
CMW places a premium on students being able to communicate their strategies to
others. Moreover, if we accept that multiplication strategies are highly dependent
on instruction, it makes sense to study strategies in instructional contexts that we
believe are promising.

Given our desire to sample broadly, the tasks employed in our interviews were
quite varied. They included multiplication word problems as well as tasks in which



Table 6
Summary of Results of Coding of Year 2 Corpus

Count- Repeated- Count- Pattern- Learned No
all addition by based product Hybrid solution Total

TD
Pre 6 1 14 5 7 26 59
Midpoint 1 3 3 2 2 1 1 12
Midpoint 2 3 1 1 4 9

NQ
Pre 2 6 7 1 1 9 26
Midpoint 1 1 2 3 1 3 2 12
Midpoint 2 2 6 1 1 2 12
Post 5 6 21 7 94 9 19 161

Total 22 25 48 7 104 24 61 291
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students were simply asked to find the product of two numbers. We do not present
a comprehensive list of all the tasks we employed. Instead, each example episode
in the article is accompanied by the task.

Our interviewers adopted a technique in which increasing support was given to
students until the student was able to solve the task. In tasks concerned with multi-
plication strategies, the interviewer always attempted first to elicit a solution
without guidance. If the student struggled, the interviewer would then provide
increasing support. Eventually, if necessary, the interaction would become strongly
tutorial in character, so that we could study the learning of multiplication strate-
gies. Except where explicitly noted, the examples presented in this paper all
describe student solutions that were produced without tutorial guidance by the inter-
viewer.

Analysis Methods

Our first categories were formed by our early classroom experiences and Year 1
interviews as well as by looking at existing research. With these initial categories
in mind, we engaged in systematic and intensive analysis of the Year 2 data corpus,
during which we coded and recoded the relevant problem-solving episodes. This
recoding proceeded until the team had reached convergence on an analysis scheme.
This effort was greatly facilitated by the creation of a digital database. The video-
tapes were first digitized and stored on a centralized server. Then, as we viewed
and coded the video, we created a database with indices into the digitized video files.
In all, this database contained 397 episodes of students solving problems, ranging
in duration from 5 seconds to 15 minutes. Of these episodes, 291 were multiplica-
tion problems (the remaining 107 required some division). This digital system
allowed for rapid comparison across the 291 instances of computational behavior,
and it facilitated convergence on a set of categories.

Because our presentation in this article does not rely on the detailed results (in
the form of frequencies) of our coding efforts, we do not report on our analysis
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procedures in any greater detail. From the point of view of this work, the purpose
of the somewhat systematic analysis was primarily to ensure that we were atten-
tive to the range of phenomena in our data corpus. Furthermore, as discussed in
the body of the article, we believe that coding becomes increasingly difficult as
students move toward expertise, because of a real merging of the strategies.
Nonetheless, in order to give the reader some sense for the range of variability in
our corpus, the overall results of our coding of the Year 2 data are summarized
in Table 6. These results are also shown graphically in Figure 8.7 In addition,
Figures 9 and 10 show the pre- and postinterview data broken out by product size
(see pages 394 and 395).

7 In this chart, we have combined the results of the two midpoint sessions because the number of focus
interviews was small in comparison to the pre- and postinterviews. In addition, it should be kept in mind
that the postinterviews were only conducted in one of these two classes. Also, the relative prevalence
of skip counting during the preinterview was due, in large measure, to the inclusion of tasks in which
the number 5 was one of the multiplicands.
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The Year 3 data were used as a test of reliability of the scheme developed during
Year 2. The coding was done by two undergraduates who were trained to code using
our category scheme. In all, these undergraduates coded 380 instances of single-
digit multiplication in the Year 3 data. After the first coding pass, the two coders
disagreed on 47 of the 380 instances (12.4%). Of these 47 disagreements, 15 were
easily resolvable by the two coders because of an error by one coder. This result is
acceptable given the inherent complexity of the data and given our position that
coding will be intrinsically difficult in some cases. Indeed, our inspection of the
remaining 32 disagreements revealed that these episodes were quite ambiguous and
difficult to code with any confidence. Of these 32 instances, 25 involved hybrid
codes, which are inherently more difficult.
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