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Thisarticle proposes ataxonomy of strategiesfor single-digit multiplication, then uses
it to elucidate the nature of thelearning tasksinvolved in multiplication. In preceding
work, it has generally been assumed that much of children’ s strategy development is
driven by changes in their general conceptual capabilities relating to number. In
contrast, we argue that, during the period in which single-digit multiplication is the
focus of explicit classroom attention, changesin strategy use are primarily driven by
the learning of number-specific computational resources. For this reason, we cate-
gorize multiplication strategies based upon the number-specific resources that are
employed in their execution. To support our conclusions, we draw from a corpus of
interviews with third-grade students that were conducted before, during, and after
instruction in multiplication.
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A great deal has been written about the development of children’ s strategies for
adding single-digit numbers. Researchers have largely agreed on types of strate-
gies, and there has been some convergence on the terminol ogy for describing these
types. For example, using the terminol ogy in the handbook article by Fuson (1992),
the earliest adding strategies use a count-all procedure: the child starts by directly
representing and counting each of the addends, and then counts all theitemsin the
representation, starting at 1 and proceeding to thetotal. The next strategy to appear
is count-on: the child starts at one addend, and then counts on from there through
the rest of the objects to find the total.

The state of research on single-digit multiplication differs greatly from that on
addition. Although thereisagrowing body of research (e.g., Anghileri, 1989; Kouba,
1989; Mulligan & Mitchelmore, 1997), researcherstill differ greatly onthe strate-
giesdescribed aswell asin theterminology used. Thus, we believethetimeisright
to attempt to forge consensus on a taxonomy of strategies for multiplication.
Building on thework of other researchers, aswell ason our own dataand analyses,
we propose such ataxonomy and useit to elucidate the nature of the learning tasks
involved in multiplication. Furthermore, we use thistaxonomy to describe how chil-
dren’ suse of multiplication strategies changesasaresult of growth and instruction.
To meet these goals, we have adopted a two-pronged approach. First, we draw
together and synthesize the work that has been done by other researchers in an
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attempt to build on this existing work and resolve any conflicts, apparent or real.
Second, we have supplemented this prior work with analyses of our own data corpus
in order to illustrate our points and support our larger argument.

Although we synthesize and build on prior research, there are some fundamental
differences between our stance and those adopted in preceding work on both addi-
tion and multiplication strategies. In preceding work, it has generally been assumed
that much of children’s early strategy development is driven by changes in their
general conceptual capabilitiesrelating to number. For the case of single-digit addi-
tion, we believe that many of the important devel opmentsin strategy usereally are
driven by such changes. However, we believe that there are other mechanismsthat
may sometimesdominate. In particular, for single-digit multiplication, wewill argue
that during the period in which multiplicationisthe focus of explicit classroom atten-
tion, changesin strategy use are primarily driven by the learning of number-specific
computational resources. Stated simply, studentsacquire agreat deal of knowledge
about specific numbers—such as4, 12, and 32—and thisknowledge allowsthe use
of new strategies or the use of old strategiesin new contexts. For thisreason, many
of the central issues associated with the learning of single-digit multiplication are
very different from those associated with addition.

This stance has significant implications for the manner in which we can expect
to achieve our stated goals. Most dramatically, this stance moderates the extent to
which we can expect to develop a simple and universal account of learning
progressionsin multiplication strategies. Strategy use by individuals, in a partic-
ular circumstance, will be very sensitive to the number-specific resources avail-
able, which areinturn sensitive to details of instruction. Thus, while amajor goal
of thisarticleisto outline broad features of ataxonomy and learning progression,
we must al so comment on how we expect the learning of computational strategies
to vary across cultural and instructional contexts. In addition, there are some
important casesin which the scheme we propose breaks down. Thisis particularly
true as students’ expertise increases. As students learn, they develop an increas-
ingly rich network of knowledge about specific numbers. In essence, their number-
specific resources merge and, because of this merging, it does not make sense to
speak of studentsusing one strategy or another. Thisdoes not, we believe, diminish
the usefulness of our taxonomic scheme. But it does have important implications
for the criteria that should be employed as we attempt to forge consensus on a
particular taxonomy.

THE LAY OF THE LAND: AN OVERVIEW OF PRIOR RESEARCH

Four major threads characterize much of the range of research pertaining to the
learning of single-digit multiplication: research concerned with (1) semantic types
(models of situations), (2) intuitive models, (3) solution procedures (computa-
tional strategies), and (4) models of retrieval. Research on semantic types is
concerned with categorizing the situations described in word problems according
to how they are schematized prior to solution (e.g., Greer, 1992; Kouba, 1989;
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Marshall, 1995; Nesher, 1988; Reed, 1999). These categories of typesinclude equal
grouping, rate, and Cartesian product. Some of this work is ambitious in the
extent to which the authors attempt to provide an integrated account. For example,
Vergnaud (1988) places his analysis within alarger framework that is concerned
with “multiplicative structures.” And Greer (1992) proposed asynthesis of semantic
types—which hecalls* models of situations’—for both multiplication and division.

Research on intuitive models, although closely related to the discussion of
semantic types, has generally been treated separately. The discussion of intuitive
models can be traced back to a seminal article by Fischbein and colleagues
(Fischbein, Deri, Nello, & Marino, 1985).* In this article, the authors hypothesize
that “Each fundamental operation of arithmetic generally remains linked to an
implicit, unconscious and primitive intuitive model” (p. 4). Solving a problem
involving two numbersis mediated by thismodel. Furthermore, in the case of multi-
plication, thisintuitive model is hypothesized to be“ repeated addition.” The precise
relationship between thesefirst two research threads—semantic typesand intuitive
models—is somewhat subtle and is not of central interest in the present article.
However, note that intuitive models are generally assumed to cut across semantic
types (e.g., Mulligan & Mitchelmore, 1997). In fact, in the original work by
Fischbein et al., it was argued that a single intuitive model underlies all under-
standing of multiplication.

Thethird thread in single-digit multiplication research pertainsto what have been
varioudly called solution procedures, sol ution strategies, and computational strate-
gies. Analyses of computational strategies are concerned with describing the
seguence of operations that a student performs in order to get from the given
numbers to the product. In the research literature, discussions of computational
strategies are typically combined with discussions of one of the first two threads
(e.g., Kouba, 1989; Mulligan & Mitchelmore, 1997).

Thefinal thread of research focuses on the nature and development of retrieval.
Typically, one of the goals of instruction in single-digit multiplication is to help
students devel op the ability to quickly state the product of two given operands. Some
researchers have been concerned with building detailed cognitive models of this
ability and how it develops (e.g., Baroody, 1999; Cooney, Swanson, & Ladd,
1988; LeFevre & Liu, 1997; Lemaire & Siegler, 1995; Siegler, 1988). Research of
this sort usually has some concern with computational strategies, but when cate-
gorizing strategies, asimple binary split between retrieval and nonretrieval strate-
giesisoften made.

Several authors have tried to address multiple threads simultaneously (particu-
larly the first three threads). Some of this work is rather ambitious, attempting to
paint a broad and encompassing picture of the development of multiplicative

1 Notethat Fischbein et al. (1985) are not only concerned with single-digit multiplication. They include,
for example, tasksinvolving decimal numbers. Thethread of research, following fromthisseminal article,
that also considers these more advanced tasks (Bell, Greer, Grimison, & Mangan, 1989; Greer, 1992;
Schwartz, 1988), will not be considered in this article.
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thinking (e.g., Confrey, 1994, 1998; Steffe, 1992; Steffe & Cobb, 1998; Vergnaud,
1988). In contrast, the present articleisrestricted almost entirely to the third thread,
which concerns computational strategies. Furthermore, we will primarily be
concerned with the development of these strategies asit occurs during the timewhen
single-digit multiplication isdirectly addressed in school-based instruction, although
our full taxonomy will encompass preinstruction strategies as well.?

To be clear, when we speak of acomputational strategy, werefer to patternsin
computational activity, viewed at a certain level of abstraction. Thisisin contrast
to an aternative stance that views strategies as knowledge (cognitive structures)
possessed by individuals. Computational strategies, aswe speak of them, are not
knowledge; rather, acomputational strategy isapatternin computational activity—
a pattern in the steps taken toward producing a numerical result. Sometimes, in
our view, thereisasimpl e relationship between a specific computational strategy
and knowledge possessed by anindividual student, but thisneed not always bethe
case.

THE MECHANISMS THAT DRIVE EARLY LEARNING PROGRESSIONS
IN ADDITION AND MULTIPLICATION

The purpose of this article is to propose a consensus taxonomy for multiplica-
tion strategies and to discuss student learning progressions through thistaxonomy.
However, prior to proposing ataxonomy, we must address the question of whether
it is even possible to devel op such a consensus taxonomy. Of course, any learning
progression is somewhat dependent on the nature of instruction. Nevertheless,
some learning progressions that we discover in mathematics learning may be
strongly constrained by factors that are largely outside of our control, such as the
inherent structure of the mathematics, the knowledge that students bring to their
learning, nearly universal attributes of children’s experience, and the more global
devel opmental unfolding of cognitive capabilities. Weread prior research as saying
that learning progressionsin single-digit addition learning are, to a certain extent,
of this more constrained sort. In contrast, we believe that the learning progression
in single-digit multiplication is less strongly constrained by factors that will be
largely independent of context. The entire weight of this article will be needed to
fully argue for this claim. Our core point is that the degree of invariance that we
can expect in any learning progression will depend on the nature of the mechanisms
that drive development in students’ strategy use. In the subsectionsthat follow, we
discuss, first, the mechanismsthat drive strategy development in single-digit addi-
tion. Then we describe our hypotheses concerning mechanisms in multiplication.

2 Some researchers, particularly those focusing on retrieval, primarily study the devel opment of
multiplication skills during and after formal instruction in multiplication. In contrast, other researchers
have looked at the development of multiplicative thinking prior to any formal instruction. This, of
course, leads to dramatic differences in what is seen, particularly with regard to students’ use of
invented strategies.
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Mechanisms That Drive Strategy Development in Addition

For the case of addition, we begin with the account presented in Fuson (1992),
wherein isdescribed adevelopmental progression with threelevelsin “conceptual
structures for addition and subtraction” (p. 250). The three levels are asfollows:

1. Perceptual unit items. Children must present addition or subtraction situations
to themselves using objects or perceptual unit items.

2. Embedded integration. All three quantitiesinvolved—the two addends and the
sum—can be simultaneously represented by embedding entitiesfor the addends
within the sum.

3. Ideal unit items. The addends are not embedded within the sum, but are outside
and can be compared to the sum. Numbers become units that comprise numer-
ical triads—two known addends and aknown sum. This permits recomposition
of the addends so that a problem can be transformed into an easier sum of
different addends.

In this account, development in computational strategies® is seen to happen in
conjunction with these changes in fundamental conceptual structures. Students at
the first developmental level perform addition by directly modeling the problem
with items of some type. First, they count out items for each of the addends, then
they count all of the items, starting at 1 and proceeding to the total. In contrast,
students at level two are capable of using a count-on procedure. They can start at
the first addend and then count on the second addend to find the total. Finally, at
level three, students can use procedures that involve recomposing the addends, so
that aproblem can be transformed such that aknown number triad can be employed.

Built into thisaccount are some particul ar assumptions about the mechanismsthat
drive the development of students’ addition strategies. At the larger level, the
development is seen as driven by changesin children’ sability to conceptualize the
quantity relationshipsthat are at the heart of the addition task. Itisalsoimplied that
this development in conceptual structures is invariant across a wide range of
cultural and classroom contexts, and thus that the development in computational
strategiesisalso largely invariant. To the extent that these assumptionsare correct,
they imply that we should expect substantial invariance in the strategies that we
observe across contexts. Furthermore, because strategy changeislinked to funda-
mental conceptual development, it impliesthat, when this development occurs, we
should expect relatively rapid, across-the-board changes in strategy use. For
example, when astudent reaches the embedded integration level, we can expect that
the student will, in arelatively short time period, apply the count-on strategy across
awide range of numbers.

There are some exceptions to this generalization, however. The new strategies
associated with the third level of development are called known fact and derived

3 Fuson (1992) uses the phrase “ solution procedure” rather than the phrase “ computational strategy.”



352 Multiplication Strategies and Computational Resources

fact (Fuson, 1992). These strategies are based on known number triads—triadsthat
include two given addends and their associated sum. Thus, at least during thelatter
phase, we must expect strategy devel opment to happen in a more piecemeal way,
with the known fact strategy being applied to some numbers and not others. The
use of strategies such as count on may also depend, to some extent, on some
number-specific knowledge.

Our analysisis presented schematically in Figure 1. In thisfigure, we divide the
cognitive resources of individuals into three broad categories. The first category
shows changes in fundamental conceptual structures; this is what changes as the
students move from perceptual unit itemsto embedded integration and thentoideal
unit items. The devel opments here essentially correspond to changesin basic capa-
bilities for representing the relationships among quantities in an addition task.

Aswe began to suggest above, not all of our knowledge of mathematicsisof this
general sort. All of uswho have learned mathematics al so know agreat deal about
specific numbers. We may know, for example, that 13isprimeand that 12 ismade

Cognitive resources
Explicit know- General solution
Conceptual | Number-specific | ledge of solu- methods (compu-
structures resources tion methods tational strategies)
= Some remembered
& triads
1 2 3 4 ..| |Specific object, Learned sum
Perceptual |[1] 2 drawing, and where number-
unit items 2 4 finger Count-all  |specific
3 techniques resources
4 (triads) permit
S
More remembered
triads
1 2 3 4 .| |New specific Learned sum
Embedded (|12 3 4 5 object, drawing, c Wher_?_number-
integration |[|2|3 4 and finger ount-on | specific
314 6 techniques resources
415 8 (triads) permit
5|6
Many _
remembered triads Derived
123 4 New specific  |fact: Re- Leharned sugn
Ideal unit 12 3 4 5 object, drawing,| composing |V er_(?_num er-
items 213 456 and finger tousea |SPecmc
- 314 5 6 7 techniques known I’e_SOUI’CGS )
9] 415 6 7 8 triad (triads) permit
§ 5|6 7 8 9

Figure 1. Mechanismsthat drive the development of strategiesin single-digit addition
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up of three 4's. The second category in Figure 1—number-specific resources—is
intended to capture knowledge of this sort. As shown in the figure, knowledge of
specific addition triads may develop in parallel with other learning. During the
earliest phases, students may know rapidly that 1+ 1=2andthat 2+ 2=4. A little
later, this may expand to include triads of theform X+ 1 = Y aswell asdoubles,
such as6 + 6 = 12. Finally, students may eventually know many addition triads.

Thethird category of cognitive resourcesin Figure 1 lists explicit knowledge of
solution methods. We expect that, in addition to knowledge that supports solution
strategies, students have knowledge of aspecific sequence of stepsthat can be used
to solve problems. Given the framework in Figure 1, we can restate our analysis of
mechanismsthat drive strategy development in addition: The devel opment of addi-
tion strategies is strongly linked to changes in the first category of knowledge
resource—fundamental conceptual structures—and these changesdrive across-the-
board changes in strategy use. Secondarily, the development of number-specific
knowledge supports some strategy change, particularly at later phases. These
changes, however, are specific to the triads that are learned.

Mechanisms That Drive Srategy Development in Multiplication

Someresearchershave proposed accountsfor single-digit multiplication strategies
that are model ed on the accountsfor single-digit addition. In some cases, the connec-
tion is made explicitly. For example, Anghileri (1989), when discussing the early
progression from what she calls unitary counting to rhythmic counting, states: “ The
development from unitary counting to rhythmic counting in groups for multiplica-
tion relates to the development in children’ s strategies for adding from the counting
all procedure to the counting on procedure” (p. 374). In her account, the “transition
from one stageto the next ismarked by the child’ s ability to recognizethat thesingle
word that ends the first count represents the totdity of that group” (pp. 374-375).
Related abilities to move between counting and cardinal meanings are also seen as
key in the devel opment of single-digit addition capabilities (Fuson, 1988, 1992).

In another category of hypothesis, some researchers have linked the progression
through single-digit multiplication strategies to underlying conceptual changes of
a fundamentally different sort than those described in the addition literature. For
example, Mulligan and Mitchelmore’ s (1997) account isbuilt on Fischbeinet a.’s
(1985) notion of intuitive models. Following Fischbein and citing Kouba (1989),
they usetheterm “intuitive model” torefer to“aninternal mental structurethat chil-
drenimpose on multiplicative situations” (p. 312) acrossarange of semantic struc-
tures. Asshownin Table 1, Mulligan and Mitchelmore associate each of theseintu-
itive models with one or more computational strategies.

Although the preceding perspectives differ markedly, they share an important
characteristic with the addition research: They link many of the most important
changesin strategy use to changesin an underlying conceptualization. In contrast,
we believe that, over the time span during which multiplication is usually taught,
the most important changes are not driven primarily by changes in how students
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conceptualize quantity; rather, these changes are driven by relatively incremental
changes to number-specific computational resources.

Table 1
Intuitive Models and Computational Strategies from Mulligan and Mitchelmore (1997)
Intuitive model Computational strategy
Direct counting Unitary counting
Repeated addition Rhythmic counting
Skip counting
Repeated adding
Additive doubling
Multiplicative operation Known multiplicative fact

Derived multiplicative fact

Our account of mechanisms is presented schematically in Figure 2. The most
important difference between Figure 2 and Figure 1isthat al of the entriesin the
“conceptual structures’ column are at thetop. Our experienceisthat most students
enter formal instruction in multiplication with the addition conceptua structures
in place. Thisincludes the single-digit conceptual structures discussed above, as
well as some understanding of the meaning of two-digit numbers. Furthermore, by
the time of formal instruction, students already possess the fundamental concep-
tual capabilities required for conceptualizing multiplication. Indeed, it has been
documented that, asearly askindergarten, children can solve simple multiplication
problems (Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993).

There are also important differences in the number-specific resources columns
of Figure2 and Figure 1. Ashighlighted in Figure 2, thelearning of patternsispartic-
ularly important in multiplication and may be an explicit focus of instruction. Also
important isatype of number-specific computational resource that we will refer to
asacount-by sequence. As part of instruction in single-digit multiplication, students
often learn to count rapidly by the integers 2 through 10. For example, a student
may learnto say the 4 count-by sequence: 4, 8, 12, 16, 20, 24, etc. Also, asinsingle-
digit addition, studentslearn number triads (e.g., 4 x 4 = 16). Thisisamoreimpor-
tant task in multiplication, however, because without knowledge of some multi-
plication triads, multiplication computations can be time-consuming and onerous.
In contrast, if a student does not recall a particular addition triad, it can often be
recomputed in comparatively lesstime.

CONTEXT, DATA SOURCES, AND RESEARCH METHODS

No single piece of evidence can support a broad stance of the sort laid out in the
preceding sections. Instead, we intend this stance to be supported by the overall
coherence of our view, as well as by its consistency with and ability to explain a
widerange of data. Our argument in this article makes use of multiple, converging
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number-specific resources are acquired.

Figure 2. Mechanismsthat drivethe development of strategiesin single-digit multiplication

lines of argumentation and evidence. First, we believe that much of the argument
for our view can be made without much inthe way of specific supporting data. When
one considers the possibility that much of the relevant knowledge underlying
single-digit multiplication is number-specific, it becomesclear that thereisaprima
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facie case to be made for this position. The preceding sections have attempted to
make some progress in this manner.

Second, we rely heavily on the work of other researchers. In what follows, we
will be systematic and explicit in connecting our analysesto the evidence and argu-
mentation of earlier publications. Third, and finally, we draw on our own empir-
ica work. Our datacollection effortswere conducted as part of the Children’sMath
Worlds Project (CMW). This ongoing project combines the design of curricular
materialsand professional development for teacherswith arange of moretraditional
research activities. In the most recent phase of this work, which has spanned
approximately 3 years, we have been devel oping and studying full-year curricula
for third- and fourth-grade mathematics.

As part of this phase of our project, we conducted 230 interviews with students
and compl eted intensive observations of classrooms. The relevant portions of our
interview data were digitized, transcribed, and coded in terms of computational
strategies used. We also tested the reliability of our scheme. In Appendix A, we
describe our data collection and analysis effortsin more detail. Thisincludes more
discussion of the tasks and interviewing techniques employed, as well as quanti-
tative results. The quantitative results presented in Appendix A are intended only
to give the reader a sense of the relative frequency of particular strategies within
our data corpus. Because of the particular character of our data corpus, the specific
frequencies we obtained are not directly comparable with those found by earlier
studiesthat sampled all multiplication combinations uniformly (refer to Appendix
A for morediscussion of thispoint). Asdiscussed above, wewill use our own data
selectively, toillustrate and add force to our arguments.

TOWARD CONSENSUS: THE CANONICAL STRATEGIES

In the case of single-digit addition, our understanding of developing conceptual
structures provides us with a natural way to categorize students computational
strategies. Although the situation in multiplication is somewhat different than that
for addition, we adopt a similar approach, using our understanding of the mecha
nismsthat drive strategy changein order to devise ataxonomic scheme for compu-
tational strategiesfor multiplication. We associate classes of strategieswith thetype
of number-specific computational resources that underpin those strategies. To be
more specific, we describe a set of canonical strategiesthat are associated with a
particular pattern of use of one or more of thesetypes of number-specific resources.
Other strategies will then be understood as variations on those canonical types.

One type of variation involves what we call hybrids. Hybrids are combinations
of the canonical types in that a student employs more than one computational
resource. Thereisal so within-category variation. For example, aswewill see, some
types of computational strategies require a student to keep track of quantities that
change as acomputation proceeds. This can pose a particular challenge, and addi-
tional resources need to be brought to bear. In particular, we will see that students
make use of multiple representational modes and techniques for employing these
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modes. Figure 3 gives an overview of our canonical strategies together with some
of the more common varieties that we have observed.

Two tables play an important role in this section. Since one of our main goalsis
to build on prior literature and help work toward consensus, it is critical that we
continueto be systematic in making connectionsto existing literature. Figure 4 and
Table 2 together provide an overview of relevant literature. Figure 4 summarizes
the taxonomic schemes from the most relevant articles, with a comparison to our
own scheme. Table 2 provides some additional details concerning the work
described in these articles.

To select the articles described in Figure 4 and Table 2 we employed severa
criteria. First, werestricted our attention to articlesthat included some explicit cate-
gorization of the range of computational strategies employed by studentson single-
digit (integer only) tasks. Thiscriterion rulesout, for the present purposes, asubstan-
tial fraction of theimportant research on multiplication. For example, thiscriterion
rules out many of the articles, mentioned above, that are primarily concerned with
semantic types and intuitive models (Bell et al., 1989; Fischbein et a., 1985; Greer,
1992; Marshall, 1995; Nesher, 1988; Reed, 1999; Schwartz, 1988; Vergnaud, 1982,
1988). Alsoruled out iswork that is primarily concerned with understanding the early
conceptual bases of multiplicativethinking, particularly asit developsin very young
children, prior to any formal instruction in multiplication. (Clark & Kamii, 1996;
Confrey, 1994, 1998; Steffe, 1992; Steffe & Cobb, 1998).

Among the articles that remain after this first cut, there is another important
distinction to be made. There is a substantial body of literature that is primarily
concerned with how people come to produce responses to multiplication tasks
rapidly (e.g., Ashcraft, 1992; Baroody, 1997, 1999; Campbell, 1994; Campbell &
Graham, 1985; Cooney et al., 1988; Koshmider & Ashcraft, 1991; LeFevreet d.,
1996; LeFevre & Liu, 1997; Lemaire, Barrett, Fayol, & Abdi, 1994; L emaire, Fayol,
& Abdi, 1991; Lemaire & Siegler, 1995; Siegler, 1988; Siegler & Shipley, 1995;
Stazyk, Ashcraft, & Hamann, 1982; Steel & Funnell, 2001). A number of features
characterize this research:

 Latency (reaction time) data are collected.

» Noword problemsare used; only straight number tasks of the form mx n appear.
 Subjects do not use objects or external representations.

* Subjects are expected to solve individual tasksin avery short amount of time.
* Subjects are sometimes, although not always, adults.

» Research is concerned with validating computer models of various sorts, partic-
ularly model s based on associative networksthat connect operandswith products.

Authors of many of these retrieval-focused articles essentially combine compu-
tational strategies into two large categories, retrieval and other. Because the cate-
gorization of computational strategiesis so coarse in most of thisresearch, it isnot
particularly relevant to the current endeavor. However, thereareafew articlesfrom

(Text continues on page 360)
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! o ) '
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Figure 3. (Continued on the next page)
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Count-by o 1216 48 12 12g Says the count-by sequence
using 20 16 4 aloud, keeping track of the num-
fingers 4 or 20 or 20 ber of groups on his/her fingers:
“4,8, 12, 16, 24" Students may
begin with thumb, index finger,
or pinky.
Pattern- | New computational resources: A number of specific patterns, such
as N x1=N,Nx0=0, and a number of pat-
based terns and techniques for 9's. Understanding
10’s patterns may involve new place-value
knowledge.

Key characteristics: Solutions are generally very rapid. One of the
9's techniques involves a particular type of use
of fingers.

O’s rule, No visible use of Response is rapid with no visible computation:
1's rule, fingers or drawing.  “One times seven is seven.”
10’'s rule
9's finger 2 4 To multiply 9 x N, the student holds up both
technique hands, and puts down the Nth finger, counting
! from the left. The tens digit of the result is given
by the number of fingers to the left of the finger
2fens 7 ones that was put down, and the ones digit is given
by the number of fingers to the right.

New computational resources: Learned associations of pairs of

Learned factors with their products

products Key characteristics: Solutions are generally very rapid. No verbali-
zation except for the result.

Learned No visible use of Response is rapid with no visible computation:

products fingers or drawing.  “7 times 6 is 42

Figure 3. (Continued on the next page)
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Hvbrids New computational resources: Employs combinations of the new

y resources mentioned above and previously
existing computational resources.

Key characteristics: For each part of the hybrid computation, the
observational characteristics are those asso-
ciated with the substrategy, as described in

this table.
Count-by + 38 39 40 Uses a count-by sequence to get
count-all "6,12, 18, 4 partway to the total, then count-all
24,30,36" 4 42 toreach the total.

“6, 12, 18, 24, 30, 36,

37, 38, 39, 40, 41, 42"
Learned 38 32 40 Starts with a learned product below
product + "6 times 6 A the total, then count-all (in one of
count-all fimes6 o7 42 the above ways) to reach the total.

s 36 “6 times 6 is 36. 37, 38, 39, 40, 41,

42
Learned (There may be written “6 times 7 is 42, plus 7 is 49, plus
product + components to show the 7is 56"
additive addition.)
calculation
Split factor 8 — L)'b One of the factors is split, so that
+ learned 7 >( - the problem is decomposed into

product + two parts. The two subproducts are

additive found using a learned product

calculation (}X,ﬁ) + ( 73&%) strategy. These are then added with
25 & an additive calculation.

Figure 3. Canonical strategies and sample variants

thisgenrethat do open up the“other” category, at least partly. Thefour bottommost
articlesin Figure4 are of thissort. Thearticlesby LeFevreet a. (1996) and Lemaire
and Siegler (Lemaire & Siegler, 1995; Siegler, 1988) have afairly differentiated
taxonomy and are thus unusual in thisfield. Cooney et a. (1988) has aless-differ-
entiated taxonomy and was selected to be representative of similar research in this
genre. Theremaining top three articleslisted in Figure 4 arethe onesthat are closest
inconcerntothe current work inthat they all present schemesthat substantially open
up the “other” category. They will thus be given the most emphasis.

As described in Table 2, the studies listed in Figure 4 differed substantially in
the populations studied, the tasks employed, and the data collected. For example,
the top three articles looked only at students solving word problems, whereas the
otherslooked only at students solving straight numerical tasks. In some instances,
students were given manipulatives or pencil and paper to use (e.g., Anghileri,
1989), whereasin othersthey were not provided with any external aids (Cooney et
al., 1988). Finaly, the ages of the subjects studied differed. Lemaire and Siegler
(1995) looked only at French second graders, Anghileri (1989) looked at students
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Figure 4. Overview of strategy taxonomies from selected articles

we must expect significant differences in the types of strategies reported. In the

subsections that follow, we now present our own framework, making detailed

ages 4 through 12, and LeFevre et a. (1996) looked at adults. For these reasons,
comparisonsto prior research where appropriate.
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Table2

Multiplication Strategies and Computational Resources

More Details on the Articles Listed in Figure 4

Data and methods

Other notes

Mulligan &
Mitchelmore,
1997

Kouba, 1989

Anghileri,
1989

LeFevreetd.,
1996

Lemaire &
Seigler, 1995

Siegler, 1988

Cooney et dl,
1988

Tracked 70 girlsthrough
grades 2 and 3. At time of first,
second, and third interviews,
students had no instruction

in multiplication. Students
received no instruction
inword problems.

Studied first, second, and
third graders. All tasks
were equal group word
problems.

Studied students ages 4-12.
In all tasks, students were
given physical objects.
They employed 6 tasks,

one for each of their seman-
tic types.

Studied undergraduates age 18-45

years. Subjects given either

5 or 10 secondsto solve, verbally,

al tasks of theformm x n.
Latency datawere collected.

Longitudinal study of French
second graders. Students were
interviewed at three times and
were given al tasks of theform
mxn,

Studied third-grade students.
Taskswere primarily of the
formmxn.

Studied 10 third and 10 fourth
graders. Tasksincluded 100 prob-
lems of theform mx n. They ob-
tained latency dataand also fol-
lowed up some tasks with inter-
views. For timed tasks, students
were not permitted to use paper
and pencil.

The framework was structured as a
developmental progressionin three
intuitive models, each of which was
associated with one or more computa-
tional strategies. The intuitive models
were (1) direct counting, (2) repeated
addition, (3) multiplicative operation.

Semantic factorsin the word problem
were the main concern. Strategies were
classified by “degree of abstraction,” as
well as by “use of physical objects.”
The strategies given in Figure 4 corre-
spond to Kouba' s classification by
degree of abstraction. Classification by
use of physical objects employed three
categories: (1) use as representations of
individual elements, (2) use astalliesor
repeated references, (3) no use.

Multiple categorization schemes for
computational strategies were employed
inthe article. Some of these schemes
are coarse, others more fine-grained.
Figure 4 reports Anghileri’ s more fine-
grained taxonomy. Anghileri reports a
developmental progression that, in
some ways, mirrors the development in
single-digit addition.

Their central interest isin tracking
strategy change—where and how
strategies are used—particularly with
respect to the use of retrieval.

Concerned with testing predictions of
the “ distribution of associations’
model, particularly with respect to the
use of backup strategies.
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COUNT-ALL

Thefirst two classes of strategiesin Figure 3 are based on resourcesthat are, in
genera, aready in place at the time of instruction in multiplication. In the first
strategy, count-all, a student can be seen counting from 1 to the product as they
perform the computation. Example 1 describes an incident in which a student,
Danny,* was presented with the task of finding the total number of children, given
that 4 children are seated at each of 3 tables. He solved this problem by first
drawing a picture, and then counting all of the children he had drawn.

Acrossindividuals of awide range of capabilities, count-all strategies can bethe
most time-consuming and most difficult to enact correctly when the operands are
large. Enacting a count-all computation requires that three separate counts are
coordinated. For illustration, consider the task of multiplying 3 x 4. Oneway to do
thisisto count to the total made by counting to 4, three times. This requires that
we enact and coordinate the three counting sequences shown in Figure 5: (1) We
need to count from 1 to 3 to keep track of the number of groups; (2) we need to count
from 1 to 4 three times, to keep track of where we are within each group; and (3)
we heed to count from 1 to 12, thus keeping track of the running total .°

1 2 3 | Count of the number of groups

1 2 3 4 1 2 3 4 1 2 3 4 | Countofentitiesina group

1 2 3 4 5 6 7 8 9 10 11 12| Count of total

Figure 5. The three coordinated counting sequences for multiplying 3 x 4

Varieties of Count-all

Because of the need to coordinate the three separate counts in count-all, many
techniques are employed, and supplementary resources are brought to bear. For this
reason, thiscategory of strategiesisthelargest and most varied part of our taxonomy.
Figure 3listsfour varieties of count-all strategies, and these represent just asample
of thediversity that exists. Acrossall these varieties, acentral issueishow external
media are used to support the computation. We thus divide the discussion that
follows according to the primary medium employed.

4 All student names are pseudonyms.
5 We are aware that an account of this sort hides much conceptual nuance, including some concep-
tual leaps that may be difficult for younger students.
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Count-all—paper-based. The use of paper as an external medium has dramatic
effects on the ability of a student to manage a count-all computation. For example,
because Danny made adrawing asafirst step to multiplying 3 x 4 (see Example 1),
this essentialy alowed him to enact the three counts sequentially, rather than
simultaneoudly. First he drew thetables, counting 1 to 3; then he drew the children,
counting from 1 to 4 three separate times; finally, he counted from 1 to 12, pointing
to each of the children he had drawn. One feature of Danny’s drawing merits
particular attention: Substantial features of the situation described in the word
problem arereflected in the drawing. It isfor thisreason that, in Figure 3, we refer
tothisvariant of count-all ascount after drawing—semisituational. When students
make situational drawings of this sort, they are making use of drawing techniques
that are most likely learned outside of mathematics instruction.

Example 1: Danny, preinterview

Task: Thereare 3 tablesin the classroom and 4 children are seated at each table. How
many children are there altogether?

Description: Initially, Danny was unsure how to proceed. Following the suggestion
of theinterviewer, he drew the situation. When theinterviewer asked, “ So, how many
children arethere altogether?” he counted quietly without pointing, but hishead moved
and he nodded a hit, asif in the direction of each drawn child.

o

/2 Chilohen oﬁ(o , o
@]

o

In contrast to Danny’ s solution in Example 1, some of the students we observed
used techniques for making simplified drawings. During the preinterview, Hector
made relatively pictorial drawings of the sort shown in Example 2. However,
during later interviews, as illustrated in Example 3, Hector used a drawing tech-
nique involving boxes and marks. The use of such abstracted drawings has a
number of benefits, not least of which isthat it can greatly reduce the amount of
time necessary to make adrawing. Indeed, in our own data, we rarely saw students
make strongly situational drawings after the preinterview. Abstracted diagrams of
the sort seen in Example 3 appeared freguently in the CMW classrooms we
observed. We refer to this variety of count-all as count after drawing—math
drawing, asthe CMW curriculum uses this term to describe these types of simpli-
fied mathematical drawings, which were strongly emphasized.

Count-all—finger-based. An dternative medium that can be used to support the
count-all strategy is the medium that consists of the student’s fingers. Example 4
presents an instance of count-al using fingers. In this example, Sam multiplied 3 x 4
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Example 2: Hector, preinterview

Task: Thereare 3 tablesin the classroom and 4 children are seated at each table. How
many children are there altogether?

Description: Hector initialy struggled trying to count on his fingers. He kept losing
his place. Eventually, the interviewer suggested he draw a picture. Hector drew the
diagram. He counted under his breath and said that 18 was the answer. When asked
to count aloud, he counted by 2'sto 12: “2, 4, etc.”

ol

Example 3: Hector, midpoint 1

Task: Martin bought 4 boxes of pencils. Therewere 8 pencilsin each box. How many
pencils did Martin buy?

Description: Hector made the diagram, then counted each tally mark from 1 to thetotal.

Hx§ =33

by repeatedly putting up three fingers, one at atime, on hisleft hand. Notice that,
unlike the examplesthat made use of drawings, the three countsin Example 4 were
enacted simultaneoudly. Sam'’ s use of his fingers helped to make this possible; he
used his fingers to enact the within-group count, whereas the total count was kept
verbally. Itisinteresting to note that the count corresponding to the number of groups
was hot enacted in any visible manner. There are six examplesin our digital data-
base in which a student uses fingers in the execution of a count-all strategy. In all
these examples, the computation was distributed over mediain the same manner as
in Example 4; fingers were used to enact the within-group count, whereas the total
count was kept verbally, and there was no visible counting of the number of groups.

Count-all—rhythmic counting. Figure 3 includes one additional variety of count-
all, called rhythmic counting. In rhythmic counting, the student counts from 1 to
thetotal, saying every value along theway, just asin al count-all variants. However,
asthey count, the student emphasi zes each value that i s associated with the comple-
tion of agroup. So astudent multiplying 3 x 4 might say, “Onetwo threefour, five
six seven eight, nine ten eleven twelve.”
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Example 4: Sam, preinterview
Task: Thereare 3tablesinthe classroom and 4 children are seated at each table. How
many children are there altogether?

Description: He counted “1, 2, 3" putting up three fingers, one at atime, on hisleft
hand. Then hesaid “4, 5, 6” again putting up three fingers. Then he continued in the
same way up to 12.

g@ 4&5/76 W i

A particular variant of rhythmic counting, rhythmic counting with fingers, is
shown in Figure 3. In this variant, the number-of-groups count is kept on the
fingers, but the within-group count is only carried by the rhythm of emphasis as
the total count is said aloud. This is most feasible when the group size is small.
Although rhythmic counting did not appear in our interview corpus, it isincluded
here because, as we discuss below, rhythmic counting figures prominently in the
schemes of some other researchers.

Count-all in the Research Literature

There are some differences in how count-all-like strategies have been treated
among the articles listed in Figure 4. First, among the three bottom rows of
“retrieval-focused” researchers, count-all strategies are given much less attention.
LeFevre et al. (1996) report no observation of count-all, likely because their
subjects were adults. Cooney et al. (1988) do mention observing count-all, but
they include it within a more encompassing “counting” category that places
count-all together with what we call additive cal culation and count-by. Lemaire
and Siegler (1995) have asimilar encompassing category that they call “repeated
addition.” Siegler (1988), however, splits out one type of strategy that he calls
“counting-sets—of-objects.” Thisisasubset of our count-all category that includes
only the very specific case in which tally marks are written on a sheet of paper
and counted.

Each of thetop three articlesin Figure 4 has a category that is close to our count-
all class of strategies. Kouba (1989) uses the name “direct representation.” Both
Anghileri (1989) and Mulligan and Mitchelmore (1997) call their respective cate-
gory “unitary counting,” and each explicitly splits out rhythmic counting. Anghileri
(1989), in particular, ascribes animportant role to rhythmic counting. In her learning
progression, it plays arole that is analogous to the role played by count-on in the
addition literature.
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As stated above, we saw rhythmic counting only rarely in CMW classrooms and
not at al ininterviews. It is possible that rhythmic counting appeared in our class-
rooms in just a brief transitional stage and that we missed this brief appearance.
However, we believe that rhythmic counting really was rarein CMW classrooms,
perhaps because it did not receive formal attention. Thisis evidence that we must
be careful about ascribing any sort of universal importance to types of strategies
that may depend very sensitively on the details of instruction.

ADDITIVE CALCULATION

Because students have prior |earning experiences relating to addition, they have
existing resources that can provide the basis of strategies that are less time-
consuming and easier to enact than count-all strategies. We call these strategiesthat
are based on addition-rel ated techniques additive calculations. An instance of this
strategy is described in Example 5, wherein Ellen multiplies 3 x 4 by first adding
4+ 4toget 8, andthen 8 + 4to get 12. Thisepisode hasfeaturesthat clearly distin-
guishit from episodesof count-all. In Ellen’ s computation, not every value between
1 and 12 was represented; instead, the computation jumped from 4 to 8 to 12.
Furthermore, Ellen’ s written work made explicit use of addition notations.

Example5: Ellen, preinterview

Task: Thereare 3 tablesin the classroom and 4 children are seated at each table. How
many children are there altogether?

Description: Ellen added two 4’sto get 8, and then added an additional 4 to get 12.

i

g a

Varieties of Additive Calculation

Aswith count-all, thereis somediversity within the additive cal cul ation category.
Example 5 is an instance of the subtype that, in Figure 3, we refer to as repeated
addition. In repeated addition, the student performs sequential additions, each
time adding the group size onto the current value of the total.

Example 6 and Example 7 show instances of a more advanced variety of addi-
tive calculation that we call collapse groups and add. In both of these examples,
the students are working on aproblem that asksthem to determine how many pencils
are contained in 4 boxes, each of which contain 8 pencils. Their solutions follow
asimilar pattern. They begin by adding pairs of 8sto get two 16s, which are then
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added using multicolumn addition techniques. These computations still have the
characteristics that distinguish additive calculations from count-all: not all values
between 1 and the total are represented, and standard arithmetic notations appear.
However, the pattern of represented quantities is somewhat different than what
occurs in the repeated addition subtype. If Harry or Jeremy were using repeated
addition, we would expect to see the pattern 8, 16, 24, 32 in their computations.
However, in these examples, weinstead see two 16s produced and then combined.
Furthermore, 24 did not appear at all in these solutions.

Example 6: Harry, midpoint 1

Task: Martin bought 4 boxes of pencils. Therewere 8 pencilsin each box. How many
pencils did Martin buy?

Description: Harry drew thediagram, and labeled it with the two 16’ s. Then hewrote
and solved the multicolumn addition problem shown.

(6_Ay ¢
//’\
37 +\(6e

Example 7: Jeremy, midpoint 1

Task: Martin bought 4 boxes of pencils. Therewere 8 pencilsin each box. How many
pencils did Martin buy?

Description: Jeremy began by writing four 8'sin arow. Then, after abrief pause, he
wrotetwo 16’ sin multicolumn format. He then proceeded to do the multicolumn addi-
tion.

/4
6
4565
Yx =
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Additive Calculationsin the Research Literature

In all but one (Anghileri, 1989) of the articlesin Figure 4, a category analo-
gousto our additive calculation category was either explicit or the authors could
plausibly haveintended similar strategiesto beincluded in one of their categories.
In the case of articles listed in the bottom two rows in Figure 4 (Cooney et al.,
1988; Lemaire & Siegler, 1995; Siegler, 1988), additive calculationsareincluded
(at least, implicitly) as part of the authors’ “other” categories. Theremaining three
studiesin Figure4 (Kouba, 1989; LeFevreet al., 1996; Mulligan & Mitchelmore,
1997) have categories that are in close alignment with our additive calculation
strategy. The alignment of Mulligan and Mitchelmore (1997) seemsto be the best.
They have categories called “repeated adding” and “additive doubling,” which
may line up with our two subtypes, repeated addition and collapse groups and
add, although they usethe phrase“ repeated addition” to refer to an intuitive model,
not a computational strategy. Kouba (1989), in contrast, has a category called
“additive,” but this seemsto only include our repeated addition subtype of addi-
tive calculation.

COUNT-BY

When instruction in multiplication begins, students begin the extended task of
learning the various number-specific computational resources that can support
more efficient and accurate strategies. Asdiscussed earlier, oneimportant and preva-
lent collection of resourcesisthe count-by sequences; studentslearnto say sequences
suchas“6,12,18,24,..." and“9, 18, 27, 36, . . .” These sequences make possible
the class of computational strategiesthat we refer to simply as count-by strategies.
In Example 8, we describe an episode in which a student used COUNT-BY to
multiply 8 x 4; she counted by 4’ sto 32, putting up afinger on each hand to keep
track of the number of groups.

Asin count-al, it is helpful to think of the enactment of count-by as requiring
the coordination of multiple counting sequences. In the case of count-by, only two

Example 8: Linda, postinterview

Task: 8 x4

Description: Lindacounted by 4'sto 32. Shesaid: “4, 8, 12, etc.,” putting up afinger
asshe said each number. She used only her left hand, so she had to reuse somefingers.

A 1
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counting sequences must be coordinated, areduction that greatly reducesthe diffi-
culty of accurately enacting count-by strategies. The tradeoff is that a count-by
sequence must belearned for each number. Thisisdepicted in Figure 6 for the case
of 8 x 4 (asin Figure 5, the sort of description given in thisfigure hidesimportant
conceptual nuances).

4 8 12 16 20 24 28 32| Count of total

1 2 3 4 5 6 7 8 | Number-of-groups count

Figure 6. The two sequences to be coordinated for multiplying 6 x 5

Varieties of Count-by

In onevariant of count-by that werefer to as count-by using fingers, students kept
track of the number of iterationson their fingers, and spoke the running total al oud.
Thiswas illustrated in Example 8. Example 9 illustrates a closely related variant,
count-by with written groups, in which a sheet of paper is used instead of fingers
to keep track of the number of groups that have been counted.

Example 9: Jeremy, preinterview
Task: 7x5
Description: Jeremy counted by 5's, pointing to each of the 5’ s that he had written.

5555555
;<535

Count-by in the Research Literature

Among thetop four articlesin Figure 4, thereis substantial consensusin how the
count-by strategy istreated. Mulligan and Mitchelmore (1997) have an equivalent
category that they call “skip counting.” Anghileri (1989) calls her equivalent cate-
gory “number pattern,” and LeFevre et al. call their category “number series.”
Kouba’ s(1989) “transitional counting” isvery similar to our count-by category, but
it seemsto include the case where astudent uses count-by to get partway to thefinal
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result, then employs count-all to complete the computation. As discussed below,
wewould treat thislatter case asahybrid.

The situation in the retrieval-focused articlesis, of course, somewhat different.
Cooney and colleagues (Cooney et al., 1988) include count-by within their large
“counting” category. Similarly, itislikely that Lemaire and Siegler (1995) would
include count-by in their “repested-addition” category; however, no explicit mention
of skip-counting-like strategies appears in either Lemaire and Siegler or Siegler
(1988).

PATTERN-BASED

Patternsof various sorts, suchasN x 1 =N and 9’ s patterns, are number-specific
resources that are often learned in parallel with the count-by sequences (refer to
Figure 2). A selection of these patternsis associated with the first pattern subtypes
listed in Figure 3: the 0's pattern, 1's pattern, and 10's pattern. These three
subtypesallow studentsto produce certain resultsrapidly and without visiblework.
Because these pattern-based strategies are associated with very rapid responses by
students, they may be hard, in practice, to distinguish from learned product strate-
gies. Nonetheless, we believe that it makes sense to treat these strategies as part of
a separate category (from learned product) because they are based on a very
different sort of number-specific resource. These patterns have a broader range of
application than, for example, asingle number triad. For multiplication by 1 there
isjust asingle pattern to see and learn; it is hot necessary for the student to learn a
separate rule for each pair of multiplicands.

Beyondthe(0's, 1's, and 10’ s patterns, there are other patternsthat students may
learn and that may support them in multiplication computations. The 9's products
are particularly rich with useful patterns, and recognition of these patterns can reduce
the difficulty of multiplication tasksinvolving 9. In CMW, studentsfirst consider
9's patterns based on thinking of 9 as 10 — 1. For example, for the product 6 x 9,
they first flash 10 fingers 6 times, then fold down 6 fingersfrom thelast 10, leaving
4 ones. Then they raise 5 fingers to show the 5 tens, thus showing 5 tens with one
hand and 4 ones with the other.

After working through all of therelated 10— 1 patterns, students summarize these
using the finger shortcut shown in Examples 10 and 11. This shortcut works as
follows: If astudent wantsto multiply 9 x N, then the student holds up both hands
and puts down their Nth finger, counting from the left. The tens digit of the result
is then given by the number of fingers to the left of the finger that was put down,
and the onesdigit is given by the number of fingersto theright (thisworks because
9xN=10xN-N).

Pattern-Based Strategies in the Research Literature

For the most part, pattern-based strategieswere not treated as a separate category
by the researchers listed in Figure 4. In many cases, it is likely that researchers



372 Multiplication Strategies and Computational Resources

Example 10: Jeremy, postinterview

Task: 9x 6

Description: He held up his handsin front of him, palm up. Then he bent the pinky
of hisright hand down quickly and for just amoment. Then he said, “54.”

Example 11: Charlie, postinterview

Task: 9x 3

Description: When asked the question, helooked down at hishandsfor just amoment,
then said theanswer, 27. Hethen explained asfollows, holding up hishandsto demon-
strate:

C: 1 didmy ninestrick, yougo 1, 2, 3. Thenyou look at it. . . . And then there’ s2 and

then there's 7.
2. 3
1

intended these strategies to be included in a learned product-like category. For
example, Lemaire and Siegler (1995) and Siegler (1988) explicitly state that they
treat all instances in which there is no overt behavior by the student as belonging
to their “retrieval” category. There are two exceptions in Figure 4, however.
LeFevre et a. (1996) have a special category called “9's rule” and Cooney and
colleagues (Cooney et a., 1988) treat pattern-based strategiesinvolving O and 1 as
a separate case, worthy of its own category.

LEARNED PRODUCT

Our last primary category of strategy, learned product, isassociated with alarge
collection of number-specific resources: the multiplication triads. The learning of
these multiplication triads typically demands a large amount of student time and
effort; the resources are acquired bit by bit, with some triads being learned earlier
than others. Example 12 contains a brief episode involving this strategy. In that
episode, Jenna quickly writes the product, saying “I just know the answer.”
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Example 12: Jenna, midpoint

Task: 7x5

Description: Jennaread the problem and then just wrote the answer. When prompted,
she explained her solution asfollows:

J: | know what thisis.

How did you get 35?7 Can you tell me how?

| just know that answer.

Did you just memorize it?

I:
J:
I:
J. Yeah.

Learned Products in the Research Literature

All the article listed in Figure 4 have a category that is closely related to our
learned product category. Thetop threearticlesall givetheir categoriesanameusing
“fact” in the title: Mulligan and Mitchelmore (1997) have “known multiplication
fact,” Kouba (1989) has*recalled number fact,” and Anghileri (1989) has“known
fact.” Where these researchers differ is in how they treat what Mulligan and
Mitchelmore (1997) call “derived multiplication facts.” Inthisstrategy, the student
begins with aknown “fact,” and then adds or subtracts, in some manner, to derive
asolution for the current problem. Mulligan and Mitchelmore treat this as a sepa-
rate category of strategy, but Kouba (1989) includes thisin her “recalled number
facts’ category. Aswe will discuss below, we treat these “ derived multiplication
facts’ as hybrid strategies.

The articlesin the remaining three rows all have categoriesthat are, once again,
quite close to our own, and all employ names with the word “retrieval.” The only
mild exception isthat Lemaire and Siegler (1995) split our learned product cate-
gory into two parts, one that they call “retrieval” and a smaller category they call
“writing problem.” Thisstrategy differsfromretrieval only in that the student writes
out the two multiplicands (e.g., 8 x 4) and then givesthe answer orally, rather than
just answering orally. In our own scheme, thistype of difference would be treated
as awithin-category variance associated with differing uses of media.

We conclude this section with a comment concerning our choice of the term
learned product for this category. We feel that none of the terms that have been
employed in the literature for this category—terms that include “fact” or
“retrieval”—do justice to this category. These terms all suggest rote lookup, asif
from a mental table, and we believe that this is overly simplistic, even when
responses are given extremely rapidly by students. For example, it certainly misses
much to say that 2 x 3 =6 and 6 x 10 = 60 are “just memorized.” Each of these
multiplication triads will have a different experiential basis, contributing to a
unique learning history. Students’ understanding of 2 x 3 =6, for example, may be
rooted in experiences of visual patterns (@00 ©0 0) or in prior learning of addi-
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tion. We will say more about this issue below in our discussion of “Where the
computational resources merge.”

HYBRIDS

Hybrid strategies are based on combinations of the strategies above. In principle,
thereisamoderately large number of possible waysthat existing strategies can be
composed to form hybrid strategies. However, as discussed below, we observed only
some of these possibilities.

Varieties of Hybrids

The most common hybrids we observed used count-by or learned product tech-
niques to get partway to the result, and then used count-all or additive calculation
to get the rest of the way. Two episodes involving hybrid strategies are described
in Example 13 and Example 14. Example 13 is an instance of learned product +
count-all. In that episode, Jennamultiplied 7 x 6 by starting from 6 x 6 = 36, and
then counting from 37 to 42 on her fingers. In Example 14, Jeanne also multiplied
7 % 6 by starting from 6 x 6 = 36, but she added on the last multiple of 6 using addi-
tive resources. Wewould thus describe thisas an instance of learned product + addi-
tive calculation.

Example 13: Jenna, midpoint 2

Task: 7 x 6

Description: Jenna said, “36,” and then counted from 37 to 42 on her fingers. She
explained, “I know that 6 x 6 = 36 so | added 6 more on my fingers.”

38 39 40
41

37 42

Example 14: Jeanne, postinterview

Task: John had 3 crayons. He decided that he wanted some more crayons, so hewent
to the store and bought 7 boxes of crayons. There were 6 crayonsin each box. How
many crayons did John have atogether?

Description: Jeanne has 45 written as her answer. When asked to explain how she
got this answer, she stated that 7 x 6 is 42, and you add 3 more to get 45. Theinter-
viewer then asked how she knowsthat seven 6’ sare 42. Jeanne said, “ Because 6 time
6is 36 and plus another 6is42.”
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Wealso observed hybrid strategiesin which students combined strategiesin ways
other than using one strategy to get partway to the result, then another to get the
rest of the way. As an example, Figure 3 includes a variety of hybrid that we call
split factor + learned product + additive calculation. In this type of strategy,
students partitioned one of the two multiplicands into two parts, computed the
product for each of these parts, and then added the resulting productstogether. This
is how Jane multiplied 7 x 8 in Example 15. She used retrieval to multiply 7 x 4,
obtaining 28, then she added 28 to 28 to get 56.

Example 15: Jane, postinterview

Task: Thewalls of theroomswere covered in beautiful tiles. There were 7 rows and
8 columns of tile on each wall. How many tileswere therein all?

Description: Jane explained that she had memorized that 7 x 4 is 28, and she added
28 and 28 to get 56 (apparently using multicolumn addition donein her head).

(};;L) %/73}#})

Hybridsin the Research Literature

Although none of the articleslisted in Figure 4 included a general discussion of
hybrids, some specific hybridsdid appear. In some cases, these were just mentioned
in passing and included in alarger category; in other cases, they were treated asa
separate category. The most common hybrid to appear in the literature is what has
been referred to as “derived facts.” As we discussed earlier, some researchers
treated derived facts as part of a learned-product-like category (Kouba, 1989),
whereas others had a separate category (Cooney et al., 1988; LeFevre et a., 1996;
Mulligan & Mitchelmore, 1997).

Where the Computational Resources Merge

In presenting our category scheme, we described our categories as separate, each
based on aspecific type of computational resource. However, aswe have suggested,
thisassumption of the separability of computational resources becomesincreasingly
problematic as students progress. This observation has direct implications for our
category scheme; it means that, as students learn more, individual instances of
computational behavior no longer belong solely to one of our categories.
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The merging of number-specific computational resources is evident even very
early in the learning process, particularly when small numbers are involved. For
illustration, consider the episode in Example 16. In this episode, Cayla was given
thetask of multiplying 2 x 3, and sheresponded, relatively quickly, with an answer
of 6. Then, when prompted to explain, she explained that “you could add three plus
three.” Thepointisthat itisunclear how to categorize an episode of thissortinterms
of our taxonomy. The initial answer was produced very quickly, which suggests
that thisis an episode of learned product. However, in her explanation, Caylasaid
that the answer could be found by adding 3 + 3. Indeed, it is not implausible that
an answer could be produced quite quickly using this latter strategy. In our view,
the appropriate way to understand episodes of this sort isthat, in theterritory of small
numbers, the various computational resources have already become integrated for
Cayla, so it simply does not make sense to differentiate among these possibilities.

Example 16: Cayla, preinterview

Task: 2x 3=

Description: Caylahad 3 + 3 = 6 written on her paper. When prompted to explain,
she said that her previous year’ s teacher taught her how to do problems of this sort:
“Last year my teacher, he.... In my classwe had third and second and he taught both
grades the same stuff. He said two times three you could add 3 + 3 two times and the
answer would be six. That’s how he taught us.”

Thistype of integration becomes more pervasive later in theinstructional cycle.
One way that this was manifested in our observations was that, following the
posing of a problem, there would be a pause of moderate length (a few seconds)
before the student stated an answer. For illustration, consider Examples 17 and 18.
In the first example, Shantawas given the task of multiplying 4 x 7. After apause
of about 3 seconds, she stated the answer, 28. When asked how shefound the answer,
she explained that she counted by 4's. Similarly, when given the same problem, Jane
also paused for afew seconds before giving aresponse. She explained that she had
found theresult by adding 14 and 14. Once again, episodes of this sort poseachal-
lengefor categorization. The answersare produced moderately quickly, after about
3 secondsin each case. This suggests that learned product may be an appropriate
coding. However, the students reported more extended cognitive activity. For
example, Shanta stated that she found the answer by counting by 4's.

The difference between interpretations here is a dlim one. As students progress
to expertise, there may not be much difference between counting by 4's very
quickly and retrieving aresult. The particular strategies also may become abbre-
viated so that wheninitiated, they also stimulate alearned product, which then may
or may not be verified by completing the strategy. Similar points have been made
elsawhere in the research literature. For example, Ter Heege (1985) stated that
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Example 17: Shanta, postinterview

Task: 4x7=

Description: When asked the question, she paused for between 2 and 3 seconds then
said, “28.” The interviewer then asked her how she got that answer.

I: How did you figure out your answer was 28.

F: 4 x7?Wsell | counted, like, by 4's.

Example 18: Jane, postinterview

Task: 4x 7=

Description: When asked the question, Jane paused for about 3 seconds and then said
“28.” During the pause, her lips move dlightly asif saying something to herself. The
interviewer then asked her how she got that answer.

E: How did you know 4 x 7 was 28?

K:  Well | did 14 plus 14.

E: Andyou do that in your head?

K:  Uh-huh.

students can become so skilled “that the border between ‘figure out’” and ‘ know by
heart’ seemsto blur” (p. 386). Similarly, Baroody (1997) argued against a clean
distinction between retrieval-related resources and other resources that underlie
multiplication. He argued that “the representation of basic number combinations
isnot adistinct aspect of long-term memory but an integral aspect of the structured
framework for general arithmetic knowledge” (p. 6).

This observation concerning the merging of resources is important, not only
because it suggests some theoretical limitations of the categorization scheme
presented in this article, but also because it has quite general implicationsfor how
we must understand the nature of “basic skills,” such asthe ability to “recall” multi-
plication facts. We must not assume that the end products of learning are memo-
rized count-by sequences or straightforwardly internalized versions of the multi-
plicationtable. Although it may occasionally be productiveto understand instruction
asdirected at helping studentsto acquiretheserelatively well-defined cultural tools,
we must be careful not to presume that there is little complexity, individuality, or
variability inthe end products of understanding. Aswas mentioned earlier, thetermi-
nology used by many to discuss this learning task (“memorizing multiplication
facts”) oversimplifies this task and thus may mis-direct learning activity.

DIMENSIONS OF VARIABILITY

In the preceding section, we presented a taxonomic scheme of computational
strategiesthat have been reported by other researchers and that we observed in our
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own work. With this taxonomic scheme now available, we use it to overview how
strategy use by students varies across contexts and how it changes over time with
instruction.

Learning Progressionsin Broad Swveep

Throughout this article, we have hypothesized that the learning of number-
specific computational resourcesisthe primary driver of strategy changeinsingle-
digit multiplication. This hypothesis leads us to have some specific expectations
regarding dimensions of variability in strategy use. First, for agivenindividual, we
do not expect across-the-board development in strategy use. Instead, at any given
time, the strategy that achild useswill depend on the values of the operands. Second,
because the learning of number-specific resourcesisvery sensitiveto instructional
emphasis, we are led to expect significant variation in learning progressions across
classroom contexts.

Nonetheless, there are some generalizations to be made, both within our project
and across the literature. The accounts in the research literature are, in broad
outline, what one woul d expect; researchers describe ageneral movement from the
left side to the right side of Figure 4. Students begin with strategies in the vicinity
of count-all and progress toward increasing use of learned-product-like strategies.
For example, Kouba (1989), in her interviews of studentsin first though third grades,
saw aprogression from what she called “ direct representation” to “ recalled number
facts.” Similarly, Mulligan and Mitchelmore (1997) documented asteady progres-
sion from their “unitary counting” strategy through “repeated addition” to “multi-
plicative calculation.” Although we did not set out to study systematically how the
frequency of strategy use changed over time, to the extent that we can draw conclu-
sions, our own data seem to be consistent with this broad developmental outline
(refer to Figure 8 in Appendix A).

Variation in Strategy Use Across Problem Contexts

Having looked at the broad sweep of changesin strategy use, wenow look at vari-
ability in strategy use at a given time during the instructional sequence. Research
from the retrieval-focused genre has documented, in a quantitative manner, some
broad measures of the variability of strategy use by individuals. It has been shown
that children use diverse strategies throughout their learning period and that adults
continueto use multiple strategies (Brownell & Carper, 1943; Jerman, 1970; LeFevre
et a., 1996). Lemaire and Siegler (1995), using their coarse-grained taxonomic
scheme (see Figure 4), found that the number of strategies employed by French
second graders began at 3.1, increased to 3.7, and then decreased to 2.4. Similarly,
Anghileri (1989) found that only 7 out of the 90 students studied employed the same
strategy to solve all of the six tasks that she administered. Furthermore, 78% of the
remaining studentswho solved all six of her tasksused at |east three different strate-
gies. Looking at adults, LeFevre et al. (1996) found, in two separate experiments,
that subjects used nonretrieval strategies on 17% and 32% of trials.
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Although our conditionswere different than thosein the studies noted above, we
found variability on asimilar order of magnitude. During agiven interview, indi-
vidual students tended to use multiple strategies. Even during the final interview,
they employed an average of 3.0 different canonical strategy types. Although
values of this sort are very sensitive to the granularity of the coding scheme (and
to difficultiesin coding of the sort mentioned above), they can give a sense of the
variability inindividual student’s use of strategies.

Variation in Strategy Use With Operand Values

Next we discuss how strategy use varies depending on the numbers that appear
in a task. To begin, the retrieval-focused literature has identified a number of
“structural features’ that seem to have importance for student solutionsin single-
digit multiplication:

1. Problem-size effect. Taskswith smaller operands are easier for studentsand are
more likely to be solved by learned product (e.g., Campbell & Graham, 1985;
LeFevreet d., 1996; Miller, Perlmutter, & Keating, 1984).

2. Thetieseffect. Tasksinvolving ties (i.e., tasksin which both multiplicands are
the same, asin 6 x 6) are easier for students than would be expected given the
problem-size effect and are more likely to be solved by learned product (e.g.,
Campbell & Graham, 1985; LeFevreet a., 1996; Miller et al., 1984).

3. 5-operand advantage. Tasks with 5 as an operand are easier for students than
one would expect given their problem-size and are more likely to be solved by
learned product (e.g., Campbell, 1994; Campbell & Graham, 1985; LeFevre et
al., 1996; Miller et al., 1984).

Some of the studieslisted in Figure 4 attempted to map out, in terms of their own
category schemes, how strategy use depends on structural features of this sort.
Lemaire and Siegler (1995) did thisfor a strict version of the problem-size effect.
Intheir analysis, they divided the problems given into 4 categories: easy (product
< 8), relatively easy (product 9-18), relatively hard (20-36) and hard (36-81). At
thetime of their first interview session, these situations existed:

* Retrieval dominated for the easiest problems.
* Repeated addition and retrieval dominated for the relatively easy problems.

* Repeated addition and “1 don’t know” were common for the relatively hard
problems.

» “] don't know” was most common on the hardest problems.

In contrast, by the third interview session, retrieval was the most common
strategy across all the categories of problems. Steel and Funnell (2001) docu-
mented a similar pattern in the use of retrieval. When our data are broken out
in this manner, we also see differences in strategy use on “easy” and “hard’
problems during both the pre- and postinterviews (see Figures 9 and 10 in
Appendix A).
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However, an analysis that looks only at product size misses many of the impor-
tant details concerning the dependence of strategy use on multiplicand values,
including the possibility that students may tend to use different strategies on ties
and 5-operand tasks. Here, the existing literature is somewhat sparse; there have
not been systematic attempts to map, in detail, how children’s strategy use varies
acrossall multiplicand values. However, LeFevre et a. (1996) present rel evant data
for adults. In brief they found that—

» for tasksinvolving O or 1 asoperands, the only methodsreported were“retrieval”
and “rule.”

* “repeated addition” was used primarily for problems with 2 as an operand.

» “number series’ (count-by) was used primarily on problems with 3 or 5 as an
operand.

« the majority of uses of “derived fact” were on problems with a product greater
than 40.

These brief results suggest more complexity in how strategy use depends on
operand thanis suggested by the structural features|listed above, and we must expect
more complex dependencein children, particularly during thetime that the students
are engaged in the learning of new computational resources.

Issues of Universality Revisited

Figure 7 drawstogether arough map of learning progressionsthat describeswhat
we saw in our own classroomsand that is consistent with what we know from prior
research (in contrast to Figure 2, Figure 7 attempts to capture more of the nonlin-
earity of the learning progression). How universal is the progression described in
Figure 7? Any answer to this question must necessarily be specul ative. Nonethel ess,
in this section, we draw together our best guesses concerning how this learning
progression may depend on the particularities of classroom and cultural contexts.

We have argued that any learning progression in multiplication strategy use will
depend, in a sensitive manner, on the nature of instruction. Nevertheless, there are
some reasonsto expect rather substantial uniformities acrossinstructional contexts.
Thisistrue, first, because there are a number of constraints on strategy develop-
ment that operate across many contexts in which multiplication is learned. For
example, there are some broad cognitive constraints, such as the size of working
memory, that strongly constrain the range of computational strategies that are
feasible, and there are significant uniformitiesin the notational systems used across
classrooms and context. Furthermore, across classrooms and cultural contexts,
there are uniformities in instructional approach that go beyond these constraints.
For example, these constraints do not require the teaching of multiplication triads,
yet multiplication triads are the focus of instructional attention acrossawiderange
of classroom and cultural contexts.

With these thoughts in mind, Table 3 draws together some of our best guesses
about the universality of our scheme and learning progressions. For each of the
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Figure 7. A rough map of the learning progression

strategy types, thistable describes what we believe will be nearly universal across

cultures and context, what we believe will be somewhat culturally dependent, and
what we believewill depend strongly on featuresthat arelikely to vary across class-

room contexts. As stated in Table 3, we expect the use of count-all and additive

calculation strategiesto befairly universal, aslong as students have had prior instruc-
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Table3

Multiplication Strategies and Computational Resources

Conclusions About the Universality of Our Taxonomy and Progression

Strongly context

Strategy ~ Nearly universal Culturally dependent dependence
Count-all  When given the oppor- Drawing conventions  Students may use very
tunity, studentswho have will affect types of draw- specific drawing and
had prior instructionin ings. Therewill bevari- finger counting tech-
addition will invent some ation across culturesin  niquesthat are prac-
varieties. conventional waysthat ticed in the classroom
fingers are used for or learned in some
counting. homes.
Additive  When given the opportu-  There will be variability Students may learn and
caculation nity, studentswho have  across cultures associated practice particular
had prior instructionin with cultural variationin techniquesin some
addition will invent some addition notationsand  classroom contexts.
varieties. techniques
Count-by  Some sequencesmay be  Thelearning of count-  Useis strongly depen-
discovered and practiced by sequencesor tables  dent on classroom
independently by students, may be morefrequent  learning and individual
but use will be limited insome cultures. The  practice of the count-
without formal classroom  structure of number by sequences.
attention. words affectswhich The order in which
The base system used count-by sequences count-by sequences are
hasimplicationsfor which are easier to learn. learned, and relation-
sequences are easier to ships taught between
learn. (10's,5's,and 9's them, may vary across
have simple patterns.) instructional contexts.
Pattern- Induction of Oand 1-based Explicitinstructionin  Thelearning of some
based patterns by students certain rules or patterns  pattern-based strategies
should beuniversal. 5and  may be moretraditiona  will be strongly depen-
10 patterns should be and frequent in some dent on explicit class-
universal acrosscultures  cultures. room attention. For
that employ base 10. example, 9's pattern-
based strategies may
be much morelikely to
appear if they arean
explicit focusin the
classroom.
Learned  Studentsmay incidentally Thelearning of pair- Learning of number
product learn some pair-product  product associations triadsis strongly de-

associations, but use will
be limited without formal
classroom attention or
out-of-school experience.
The base system used has
implications for which
pair-product associations
are easier to learn. Thus,
there are some learning
sequences that are univer-
sally more sensible than
others.

may be more or
lesstraditional in
some cultures.

pendent on classroom
learning and practice.
The sequence in which
pair-product associa
tions are learned may
vary across instruc-
tional contexts.
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tion in addition and they are given the opportunity to employ these strategies.
However, we do expect significant cultural and classroom variation in the specific
subtechniques that are employed.

In contrast, the use of count-by and learned product strategiesis somewhat more
dependent on features of the classroom context. Students may induce some
count-by sequences on their own or they may learn them in the context of addi-
tioninstruction (e.g., the sequencesfor 2 and 5). But the learning of other count-
by sequences (or tables) likely requires explicit classroom attention, and this class-
room attention may be more or less conventional across cultural contexts.
Similarly, students may learn multiplication triadsfor some small numberson their
own, but broad learning of multiplication triads requires substantial effort. Where
students are taught count-by sequences and number triads, there are constraints
that make some instructional sequences more sensible than others. For example,
because we employ a base-10 system, the 5 count-by sequence can be learned
comparatively rapidly; thus, it is sensible to teach this sequence early in the
instructional cycle.

The story for pattern-based strategies is mixed. The pattern-based strategies
involving 0 and 1 should be induced, nearly universally, by students; the associ-
ated patterns do not even depend on the use of base 10. Similarly, we expect the
use of pattern-based strategies with 5's and 10’s to be fairly universal across
culturesthat employ base 10. The use of other pattern-based strategies may depend
more sensitively on detail s of instruction, even though the patterns themselves are
essentially determined by our use of base 10. For example, it is less likely that
students will recognize patterns in multiples of 9's if these are not addressed
instructionally.

Finally, the use of learned product by students, across a wide range of multipli-
cands, requiresexplicit instructional attention. Asstated above, studentsmay learn
some multiplication triads on their own, but broad learning of multiplication triads
islikely to be dependent on substantial instructional focus. Thus, broadly speaking,
classrooms and cultures that mobilize organized and sustained efforts for such
learning will be more successful.

SUMMARY AND CONCLUSION

The purpose of this article was to attempt to work toward consensus on a
taxonomy of strategies for single-digit multiplication. Our goal was to present a
scheme that is fully fleshed out and that leaves little room for misunderstanding.
In addition, we wanted to give the reader a sense for the range of variability. For
these reasons, we presented and discussed numerous examples, and we frequently
returned to the research literature to make explicit comparisons.

There are some important respects in which the stance we adopted differs from
that of previouswork. Our taxonomy of strategiesis determined by an understanding
of the mechanisms that govern strategy development. For the particular case of
single-digit multiplication, we contended that the primary mechanismistheincre-
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mental appropriation, by students, of number-specific computational resources. This
stance had major implicationsfor our larger task of understanding the devel opment
of multiplication strategies. We wereled to expect operand-dependence of strategy
useat all stagesof learning, even into adulthood. Our stanceimplied that strategies,
as well as learning progressions through strategies, are sensitively dependent on
certain details of instruction. Additionally, the boundaries between categories
becomeincreasingly fuzzy over time, because computational resources ceaseto be
separable.

Aswe discussed earlier, no single piece of evidence can support a broad stance
of thissort. Instead, we intend this stance to be supported by the overall coherence
of thisview, aswell as by its consistency with and ability to explain awide range
of data. Here, we summarize the arguments and evidence that can be drawn from
the presentation in the earlier parts of this article.

First, much of our argument was made without specific supporting data. We
believeitismanifestly clear that at least some of the relevant knowledge is number-
specific. Some classes of strategies are, by their very nature, specific to operand
value. For example, some of the pattern-based strategies only work when 9is an
operand. Similarly, somevariants of strategies, such as certain finger-counting tech-
niques, only work for asmall range of operand values. Further adding to thisprima
facie case isthe fact that, in order for some of our classes of strategies to work, a
child must acquire supporting number-specific knowledge. For example, the count-
by strategy requires that the student acquire the count-by sequences for each
operand. And learned product requires that specific number triads are learned. No
across-the-board conceptual development can obviate the need for the learning of
these number-specific computational resources.

Following from these observations, aprimafacie case can also be made for some
amount of sensitivity to instruction. Without explicit instructional attention, it is
unlikely that children would learn most of the single-digit number triads or that they
would learn the count-by sequences. Thus, the appearance of these strategieslikely
requiresthisinstructional attention.

In addition to this primafacie case for our view, thereisalso avariety of empir-
ical support spread throughout thisarticle. Thissupport includesthe following obser-
vations:

» Dependence of strategy use on operand value. We presented evidence that the
strategy employed depends on operand values.

 Variability in strategy use persists through instruction and into adulthood.
Following instruction, students continue to use several strategies. Still more
dramatically, adults continue to use different strategies, depending on operand
values.

 Diversity of strategy variants. The sheer diversity and nature of the strategies
observed constitute evidencefor our stance. It isnot smply the casethat the selec-
tion of strategies depends on operand values. As we stated just above, we
observed strategy variants that developed for particular tasks, with particular
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operand values. This suggests a richer texture to the learning than could be
explained by an across-the-board conceptual shift.

* Instructional sensitivity. We stated above that aprimafacie case can be made for
instructional dependence. We also believe that we have seen the beginnings of
empirical evidence for this dependence. In particular, there were idiosyncrasies
in our data corpus that can be plausibly tied to features of CMW. Thisincluded
differences in strategy use between our observations and those of other
researchers.

» Themerging of computational resources. We presented several examplesthat we
argued wereintrinsically ambiguous—they could not be placed within any of the
sort of categories of computational strategiesthat are discussed in the literature.
Within our framework, this particular variety of ambiguity was expected, since
strategy use depends on a moderately large number of interrelated number-
specific resources.

Again, no single category of evidenceisthelinchpininthe argument for our view.
Rather, the support comesfrom the broad consistency of our stance with these obser-
vations.

Instructional Implications

Thereisatemptation for us, asresearchers, to want to discover universal progres-
sionsin learning that are driven by deep changesin conceptua structure. The very
nature of mathematics makesit seem particularly suited to such an approach and,
to be sure, there are casesin which these discoveries arethere to befound. However,
there are parts of mathematics learning that, although important and complex, are
driven by more incremental mechanisms. We have argued that thisis true for the
learning of single-digit multiplication.

We must be careful, however, in how we understand the instructional implica-
tions of thisclaim. We have essentially argued that the devel opment of strategy use
in multiplication is not driven by central conceptual developments. But it would
be a mistake to take this as implying that the learning of multiplication need only
be based on repeated practice with isolated facts. Our claim suggeststhat we stake
out a middle ground. Students require help to acquire number-specific computa-
tional resources, but these resources must not be thought of as consisting of acollec-
tion of isolated “facts.” This point was emphasized, above, when we discussed the
increased merging of computational resources with learning. Based on the obser-
vationsreported there, we argued that it is not appropriate to think of the end prod-
uctsof learning asastraightforwardly internalized version of the multiplication table,
consisting of individual and separate cells.

Taken as awhole, this suggests that we cannot give up on practice of a certain
sort; students must have experience working with specific operands. But it also
suggests that this practice will haveits greatest effect when “facts’ are not treated
inisolation, and when practice on number triadsfollows, and is continually linked



386 Multiplication Strategies and Computational Resources

to, meaningful examination of patternsand strategies. Practice must be donein such
away that it hel ps students become familiar with, and continues to support student
understanding of, the patterns and structure across computational resources, so that
each child can form arich network of number-specific resources.

These conclusions point to the need for some specific varieties of futurework in
order to improve pedagogy in thisarena. We must work to determine what compu-
tational resources students should acquire, and how they can best acquirethem. This
suggestsrelatively focused questions, such as which patterns are powerful enough
that they deserveinstructional effort. But we may also consider some more radical
restructuring of instruction. For example, in recent iterations of CMW, we have
explored the possibility of teaching multiplication and division together. Our belief
isthat this approach can help students get a handle on the rich network of multi-
plicative structure of the integers less than or equal to 81. In our view, thisisthe
sort of pedagogical direction suggested by the analysis presented in this article.
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APPENDIX A
Additional Detail on the Empirical Work

In this appendix, we provide details concerning the context and scope of our
empirical work. We briefly describethelarger project of which thiswasapart, and
we overview our data collection and analysis techniques.

Context: The Children’s Math Worlds Project (CMW)

Our datacollection effortswere conducted as part of one phase of the Children’s
Math Worlds Project (CMW), during which we worked to develop full-year
curricula for third- and fourth-grade mathematics. The topics covered in these
curriculaincludethe usua grade-level topics, such assingle-digit multiplication and
division, aswell as sometopicsthat are not usually addressed until later years. There
isastrong emphasis on fostering classroom discourse around mathematics; students
are encouraged to develop and share their own strategies, and drawn representa-
tions are particularly valued. However, this focus on discourse is not done at the
expense of grade-level mastery. Patternsfor all factors are discussed, and students
learn fundamental strategies such as count-by.

Data Collection

During this phase of the CMW project, we have worked closely with a number
of classrooms and engaged in arange of data-collection activities, including teacher
interviews, student interviews, written assessments, and frequent classroom obser-
vations. Inthisarticle, we have drawn examplesfrom the interviewswe conducted,
all of which werevideotaped. However, our conclusions herewere greatly informed
by the full range of our experience in classrooms, particularly by the detailed
ethnographic work by members of our team.

Table4isan overview of theinterview data collection on which we drew in our
study of single-digit strategies for multiplication. As described in this table, we
conducted our first interviews near the end of Year 1 of this phase of the project.
Thirty-seven interviews were conducted with students in two classrooms. With
regard to our study of computational strategies, thesefirst interviewsallowed usto
refine our interviewing strategies.

During Y ear 2, we engaged in our most extensive and systematic data collection
related to single-digit computational strategies. Weinterviewed third-grade CMW
students at the start of the year, at two midpoints during a unit on multiplication,
and then after the multiplication unit. Finaly, during Y ear 3, weinterviewed aselec-
tion of fourth graders at the start of the year. For the purposes of the current work,
these last interviews allowed usto test the reliability and generalizability of cate-
gorieswe had devel oped from our analysis of the previous year’s data.

Two classroomsfromthe Y ear 2 data corpus provided a sufficient range of exam-
plestoillustrate our classification, and our exampleswereall drawn from these class-
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Table4
Overview of Sudent Interview Data Collection Relevant to Sngle-digit Multiplication
Srategies

Y ear Grade When? No. of classes No. of inte
views
1 3 End of year 1 22
4 End of year 1 15
2 3 Start of year 4 69
3 Midpoint 1 2 8
3 Midpoint 2 2 7
3 After instruction 3 45
3 4 Start of year 3 64

rooms. Teachers TD and NQ° taught in public schoolsthat differed dramatically in
the makeup of their student bodies. TD’ s classroom was in a suburban school that
was 55% White and 31% Asian, with the remainder being Black and Hispanic.
Furthermore, 14% of students were from low-income families, and 14% were
reported as having limited English proficiency. NQ's classroom was in an urban
school with a student population that was 53% Black, 43% Hispanic, 2% White,
and 1% Asian. Ninety-two percent of students were reported as low income, and
30% as possessing limited English proficiency.

Table5 providesabreakdown of theinterviews conducted with studentsin TD’ s
and NQ'’ sclassrooms. We attempted to interview all the studentsin both classes at
the start of the year and after the multiplication unit. However, NQ declined to have
us conduct postinterviews because of time pressures at the school. A selected
group of studentsin each classroom were also interviewed at two midpoints during
the multiplication unit.

Table5
Interviews Conducted in the Classrooms of TD and NQ

Pre Midpoint 1 Midpoint 2 Post Tota
NQ 22 4 3 0 29
TD 12 4 4 15 35
Total 34 8 7 15 64

Interviewing Tasks and Techniques

Intheinterviews mentioned above, our goal swith respect to computational strate-
gieswere intentionally broad. As much as possible, we wanted to be able to see the
full range of diversity of computational strategies. Furthermore, wewanted to under-
stand as much as possible about how each individual strategy worked; for example,

6 TD and NQ are abbreviations of pseudonyms, not of the teachers’ true names.
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we wanted to see what types of drawings students made and how they made these
drawings, and we wanted to see how students used their fingers in computations.

Thisinterest in mapping the “floraand fauna” of student strategies placed diffi-
cult demands on our interview data collection. Ideally, we would have given all of
the single-digit multiplication combinationsto every student, on each type of word
problem, and at many points of time. However, pragmatically, it was not possible
for usto cross al possible number combinations with all types of word problems.
Some studieswith adults administer all possible number combinationsto individual
subjects, but they do not employ word problems, and they give subjectsamaximum
timelimit on each question of perhaps 5 or 10 seconds (e.g., LeFevreet ., 1996).
In contrast, because wewereinterested in understanding, in full detail, how subjects
execute strategies, including very laborious strategies, we often needed to give
students many minutes to solve a problem. This was particularly an issue during
early interviews, when students used less efficient strategies.

The situation was complicated till further by the fact that our one-on-oneinter-
view time had to serve multiple needs. We had other research concerns operating
inparallel, including research concerned with semantic types. Furthermore, because
this work was conducted during an early iteration in the design of our curricular
materials, we used our interviewsto help us understand student difficulties, so that
we could refine our ongoing instruction.

Theresult of these multiple desires and constraintsisthat it was not possiblefor
us to cover all possible dimensions during every interview. Instead, we used our
evolving understanding to samplewidely acrossthe range of phenomenaof interest.
Theresult isthat some particular types of quantitative analysiswere not accessible
to us. For example, although it was possible for us to compute the frequency with
which students employed certain strategies, these frequencies are not directly
comparable with those found by earlier studies that sampled al multiplication
combinations uniformly. However, our method of broad sampling has put usin a
position to understand, in qualitative detail, the range of computational strategies
employed by students. In our view, thisis precisely what is needed at the current
time. As we have discussed, there is aready a substantial body of experimental
studiesin which tens or even hundreds of subjects solve all the single-digit multi-
plication combinations. But, in order to get this coverage, these studies suppress
detail, and they do not look at word problems (e.g., LeFevre et al., 1996; L eFevre
& Morris, 1999; Lemaire et a., 1991; Lemaire & Siegler, 1995; Siegler, 1988).

Furthermore, there are somereasonsthat CMW classrooms provide aparticularly
appropriate context for thiswork. Although CMW works hard to help all students
develop efficient strategies, student strategies are certainly not suppressed. |ndeed,
CMW places a premium on students being able to communicate their strategiesto
others. Moreover, if we accept that multiplication strategies are highly dependent
on instruction, it makes sense to study strategies in instructional contexts that we
believe are promising.

Given our desire to sample broadly, the tasks employed in our interviews were
quitevaried. They included multiplication word problemsaswell astasksinwhich
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students were simply asked to find the product of two numbers. We do not present
acomprehensive list of all the tasks we employed. Instead, each example episode
in the article is accompanied by the task.

Our interviewers adopted a technique in which increasing support was given to
students until the student was able to solve the task. In tasks concerned with multi-
plication strategies, the interviewer always attempted first to elicit a solution
without guidance. If the student struggled, the interviewer would then provide
increasing support. Eventually, if necessary, the interaction would become strongly
tutorial in character, so that we could study the learning of multiplication strate-
gies. Except where explicitly noted, the examples presented in this paper al
describe student sol utions that were produced without tutorial guidance by theinter-
viewer.

Analysis Methods

Our first categories were formed by our early classroom experiencesand Year 1
interviews as well as by looking at existing research. With theseinitial categories
inmind, we engaged in systematic and intensive analysis of the Y ear 2 data.corpus,
during which we coded and recoded the relevant problem-solving episodes. This
recoding proceeded until the team had reached convergence on an analysis scheme.
This effort was greatly facilitated by the creation of adigital database. The video-
tapes were first digitized and stored on a centralized server. Then, as we viewed
and coded the video, we created adatabase with indicesinto the digitized videofiles.
Inall, this database contained 397 episodes of students solving problems, ranging
in duration from 5 secondsto 15 minutes. Of these episodes, 291 were multiplica
tion problems (the remaining 107 required some division). This digital system
allowed for rapid comparison across the 291 instances of computational behavior,
and it facilitated convergence on a set of categories.

Because our presentation in this article does not rely on the detailed results (in
the form of frequencies) of our coding efforts, we do not report on our analysis

Table 6
Summary of Results of Coding of Year 2 Corpus
Count- Repeated- Count- Pattern- Learned No
all addition by based product Hybrid solution Total
TD
Pre 6 1 14 5 7 26 59
Midpoint1 3 3 2 2 1 1 12
Midpoint2 3 1 1 4 9
NQ
Pre 2 6 7 1 1 9 26
Midpoint1 1 2 3 1 3 2 12
Midpoint2 2 6 1 1 2 12
Post 5 6 21 7 9 9 19 161
Total 22 25 48 7 104 24 61 291
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proceduresin any greater detail. From the point of view of thiswork, the purpose
of the somewhat systematic analysis was primarily to ensure that we were atten-
tive to the range of phenomenain our data corpus. Furthermore, as discussed in
the body of the article, we believe that coding becomes increasingly difficult as
students move toward expertise, because of a real merging of the strategies.
Nonetheless, in order to give the reader some sense for the range of variability in
our corpus, the overall results of our coding of the Year 2 data are summarized
in Table 6. These results are aso shown graphically in Figure 8.7 In addition,
Figures 9 and 10 show the pre- and postinterview data broken out by product size
(see pages 394 and 395).

Progression in Strategy Use
70.0%
60.0% [ Count-all
[C1 Repeated-addition
[ count-by
50.0% Pattern-based
I Learned Product
40.0% T [ Hybrid
[ No Solution
30.0%
20.0% —|
10.0%
0.0%
Pre Midpoint Post

Figure 8. Percentage use of strategies before, during, and after instruction

7 Inthis chart, we have combined the results of the two midpoint sessions because the number of focus
interviewswas small in comparison to the pre- and postinterviews. In addition, it should be kept in mind
that the postinterviews were only conducted in one of these two classes. Also, the relative prevalence
of skip counting during the preinterview was due, in large measure, to the inclusion of tasksin which
the number 5 was one of the multiplicands.
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Strategy Use by Product Size
Preinterview
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Figure 9. Strategy by product size for the preinterview

TheY ear 3 datawere used asatest of reliability of the scheme devel oped during
Y ear 2. The coding was done by two undergraduates who were trained to code using
our category scheme. In all, these undergraduates coded 380 instances of single-
digit multiplication in the Y ear 3 data. After the first coding pass, the two coders
disagreed on 47 of the 380 instances (12.4%). Of these 47 disagreements, 15 were
easily resolvable by the two coders because of an error by one coder. Thisresultis
acceptable given the inherent complexity of the data and given our position that
coding will be intrinsically difficult in some cases. Indeed, our inspection of the
remaining 32 disagreementsreveal ed that these epi sodes were quite ambiguous and
difficult to code with any confidence. Of these 32 instances, 25 involved hybrid
codes, which are inherently more difficult.



Bruce Sherin and Karen Fuson 395

Strategy Use by Product Size
Postinterview
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Figure 10. Strategy by product size for the postinterview



