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 Although much of the recent research reviewed in this chapter is empirical, much is also 
conceptual and analytic.  Important advances have been made in describing and categorizing 
real-world situations in each domain, in analyzing attributes of and potential problems with the 
mathematical notations and words in a domain, and in designing conceptual supports to facilitate 
learners’ understanding in a given domain.  Some research involves a mixture of empirical and 
analytical approaches, such as analyzing advantages and disadvantages of particular algorithms 
(partly from seeing children use them) or identifying children’s errors and the reasoning behind 
them.  The following reviews and summaries of the literature are used extensively in this paper: 
Baroody and Coslick, 1998; Baroody and Ginsburg, 1986; Bergeron and Herscovics, 1990; 
Brophy, 1997; Carpenter and Moser, 1984; Cotton, 1995; Davis, 1984; Dixon, Carnine, 
Kameenui, Simmons, Lee, Wallin, and Chard, 1998; Fuson, 1992a, 1992b; Geary, 1994; 
Ginsburg, 1984; Greer, 1992; Hiebert, 1986, 1992; Hiebert and Carpenter, 1992; Lampert, 1992; 
Nesher, 1992; Resnick, 1992; and Siegler, this volume.  These include reviews carried out by 
experts in mathematics education, cognitive science, learning disabilities, special education, 
educational psychology, and developmental psychology.  The reviews in Leinhardt, Putnam, and 
Hattrup (1992) were written especially for teachers and other educational leaders; they also 
include analyses of textbook approaches to teaching.  To avoid excessive citations, results that 
are strong, salient, and clear in these reviews and summaries are not cited separately.  More 
specialized results are cited. 

Real-World Situations, Problem Solving, and Computation: 
Continual Intertwining for Sense Making and Computational Fluency 

 Traditionally in the United States and Canada, computation of whole numbers has been 
taught first, and then problems using that kind of computation have been presented as 
applications.  This approach has several problems.  First, less-advanced students sometimes 
never reach the application phase, limiting greatly their learning.  Second, word problems are 
usually put at the end of each section or chapter on computation, so sensible students do not read 
the problems carefully: They just perform the operation they have just practiced on the numbers 
in the problem.  This practice, plus the emphasis on teaching students to focus on key words in 
problems rather than to build a complete mental model of the problem situation, leads to poor 
problem solving because students never learn to read and model the problems themselves.  Third, 
seeing problem situations only after learning operations keeps the meanings in the problem 
situations from becoming linked to those operations.  This isolation limits the meaningfulness of 
the operations and the ability of children to use the operations in a variety of situations. 
 Research has indicated that beginning with problem situations yields greater problem-
solving competence and equal or better computational competence.  Children who start with 
problem situations directly model solutions to these problems.  They later move on to more 
advanced mathematical approaches as they move through levels of solutions and of problem 
difficulty.  Thus, the development of computational fluency and problem solving is intertwined 
when both develop together with understanding. 
 For many years, researchers have contrasted conceptual and procedural aspects of learning 
mathematics.  Which should come first has been debated for a long time.  Recent research 
portrays a much more complex relationship between these conceptual and procedural aspects 
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than simply that one precedes the other.  Instead, they are continually intertwined and potentially 
facilitate each other.  As a child comes to understand more, the method the child is using 
becomes more integrated internally and in relation to other methods.  As a method becomes more 
automatic, reflection about some aspect may become more possible, leading to new 
understanding.  These conceptual and procedural interconnections are forged in individuals in 
individual ways.  It may not even be useful to distinguish between these two aspects of learning 
because doing and understanding are always intertwined in complex ways.  Furthermore, 
different researchers may refer to the same method as a procedure or as a concept, depending 
upon whether the focus is on carrying out the method or on its conceptual underpinnings.  And, 
in a given classroom at a given time, some students may be carrying out what looks like the same 
method, but they may well have different degrees of understanding of that method at that time.  
This is what the helping aspects of classroom teaching are all about—helping all students to 
relate their methods to their knowledge in ways that give them fluency and flexibility. 
 The discussion in the rest of this paper does not continue to reiterate that the most effective 
teaching and learning help students to intertwine doing and understanding mathematics.  Instead, 
this result from the research literature forms the backdrop for what follows. 
 The types of real-world situations that have been identified for addition and subtraction and 
for multiplication and division are briefly presented next.  Such situations in the form of word 
problems and real situations brought into the classroom by students can provide contexts within 
which the operations of addition, subtraction, multiplication, and division can come to take on 
their whole range of required mathematical meanings.  The rest of the paper focuses on 
developmental progressions in the methods students can come to use for these operations on 
single-digit and multidigit whole numbers.  The vast amount of research on these topics in the 
past 30 years indicates that substantial changes are needed in classroom teaching and learning of 
whole number operations. 
Types of Real-World Addition, Subtraction, Multiplication, and Division Situations 
 Researchers from around the world have reached considerable consensus in identifying the 
types of real-world situations that involve addition or subtraction, although minor variations in 
terminology exist.  One classification of such situations is given in Table 1.  Note that for each 
type of problem, each of the three quantities involved can be the unknown.  There is a substantial 
literature on aspects of problems that increase their difficulty.  In general, problem statements, 
syntax, or sentence orders that do not follow the action in a situation are more difficult than those 
that do.  The language of problems that involve comparing quantities is difficult for children at 
first, partly because the structure in English lumps together two kinds of information: who has 
more and how much more.  Even kindergarten children can solve many of these problems if they 
use objects to directly model the situation.  Textbooks, however, typically include only the 
simplest variation of each problem type.  In contrast, in the texts of the Soviet Union, problems 
were given equally across the various types and unknowns, and 40% of the problems in the first-
grade books and 60% of the problems in the second-grade books were two-step problems 
(Stigler, Fuson, Ham, & Kim, 1986). 

Insert Table 1 about here; see Table 1 at the end of this paper 
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 An important distinction needs to be made between a situation representation (an equation 
or a drawing) and a solution representation.  The most powerful problem-solving approach is to 
understand the situation deeply—draw it or otherwise represent it to oneself.  This is the natural 
method used by young students.  But textbooks and teachers influenced by textbooks push 
students to write solution representations that are not consistent with their view of the situation.  
Students will write 8 + A = 14 for a problem like “Erica had $8.  She babysat last night and now 
has $14.  How much did she earn babysitting?”  Textbooks often push students to write 14 – 8, 
but that is not how most students represent or solve the problem.  Allowing students to represent 
the situation in their own way communicates that the goal of problem solving is to understand 
the problem deeply.  Once they see the goal, students can experience success and move on to 
more difficult problems. 
 There is less consensus about whole number multiplication and division situations (see the 
reviews by Nesher, 1992, and Greer, 1992).  These situations are usually addressed in the 
literature on rational numbers, which focuses on fractions as well as on whole numbers.  Whole 
number situations identified by almost all researchers include grouping situations, multiplicative-
comparing situations, and cross-product or combination situations.  Grouping situations involve 
some number of equal groups such as 3 packages each containing 5 apples.  For the two 
corresponding division situations, you may either (a) know the product 15 and how many 
packages (3) and need to find out how many are in a package, or (b) know the product 15 apples 
and the size of the packages (5) and need to find out how many packages.  The multiplicative 
comparing situations use the language “x times as many as” or the reverse fractional language 
“1/xth as many” as in “Maria had 15 books.  She had 5 times as many as Saul.  How many books 
did Saul have?”  As with the additive comparing situations, the comparing sentence can be said 
in two ways (here it can also be said as “Saul had one-fifth as many books as Maria.”).  The 
cross-product or combination situations are those in which everything in one group is combined 
with everything in a second group.  Arrays are a good way to show these situations.  Familiar 
examples are problems involving clothes (There are 3 shirts and 2 pants.  How many different 
outfits?) or sundaes (There are 4 kinds of ice cream and 2 kinds of topping.  How many different 
kinds of sundaes?).  Area is one kind of cross-product situation. 
 Experience with these various addition, subtraction, multiplication, and division situations, 
and with the language involved in them, allows students to build a mathematically adequate 
understanding of the operations and notations by using them in these situations.  The symbol – 
means more than take away, and x means more than repeated addition.  Solving and posing 
problems from a wide range of real-world whole number situations enables students to 
understand alternative meanings. 

Building Fluency With Computational Methods: General Issues 
 Fluency with computational methods is the heart of what many people in the United States 
and Canada consider to be the elementary mathematics curriculum.  Learning and practicing 
computational methods is central to many memories of learning in the twentieth century.  
Twentieth-century mathematics teaching and learning, however, were driven by goals and by 
theories of learning that are not sufficient for the twenty-first century.  We enter the new century 
with inexpensive machine calculators widely available, computers increasingly appearing in 
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schools and libraries, the World-Wide Web giving access to a huge variety of information, and 
supercomputers continuing to create demands for new kinds of machine algorithms (general 
multistep methods).  The information age creates for all citizens the need for lifelong learning 
and for flexible approaches to solving problems.  Everyone needs the ability to use calculating 
machines with understanding. 
 Clearly the twenty-first century requires a greater focus on a wider range of problem-
solving experiences and a reduced focus on learning and practicing by rote a large body of 
standard calculation methods.  How to use the scarce hours of mathematics learning time in 
schools is a central issue.  This decision requires in part a value judgment as to which needs are 
most important.  But new research can also inform our choices.  This paper summarizes some 
results of research that can help in constructing a twenty-first century image of what building 
fluency with computational methods would entail.  Educators and the public are still attempting 
to reach consensus on what kinds and how much computational fluency are necessary today.  
Computational fluency is one vital component of developing mathematical power.  Other 
components include understanding the uses of computation and understanding computational 
methods.  This paper reviews how all of these aspects of mathematical power can be supported 
for students and for teachers.  Given that mathematics learning time is a scarce resource, it is 
useful to know roughly how long it takes various children to reach various levels of 
computational fluency.  Only with such knowledge can we make sensible decisions about how 
scarce learning time should be allocated for reaching, among all of the worthwhile goals for 
mathematics learning, computational fluency. 
 The goal of computational fluency for all has been an elusive goal at least since the 1950s.  
It is not the case that the United States and Canada have had a successful computational 
curriculum that is now at risk of being thrown over by “math reform.”  Research studies, national 
reports, and international comparisons have for decades identified many aspects of computation 
in which children’s performance was disappointing.  These results have sometimes been 
overshadowed by even worse results for problem solving or applications of calculations, making 
calculation seem less of an issue than it has consistently been.  Many of the calls for school 
mathematics reform have been at least partially focused on teaching for understanding as a way 
to eliminate computational errors and thus increase computational performance.  For example, on 
standardized tests U.S. Grade 2 norms for two-digit subtraction requiring borrowing (e.g., 62 – 
48) are 38% correct.  Many children subtract the smaller from the larger number in each column 
to get 26 as the answer to 62 – 48.  This top-from-bottom error is largely eliminated when 
children learn to subtract with understanding (e.g., Fuson & Briars, 1990; Fuson, Wearne, et al., 
1997; Hiebert et al., 1997).  Building on a foundation of understanding can help all students 
achieve computational fluency. 
 Several themes characterize much of the research on computational methods over the past 
30 years.  These themes apply across computational domains (e.g., single-digit addition and 
subtraction, multidigit multiplication and division).  First, I briefly outline these themes.  Then, 
because one of the most central themes is that each computational domain has a great deal of 
specific domain knowledge, I turn briefly to each domain in turn to indicate these central aspects 
of domain knowledge.  I conclude with a few more general points from the research. 
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 Within each computational domain, individual learners move through progressions of 
methods from initial, transparent, problem-modeling, concretely represented methods to less 
transparent, more problem-independent, mathematically sophisticated, symbolic methods.  At a 
given moment, each learner knows and uses a range of methods that may vary according to the 
numbers in the problem, the problem situation, or other individual and classroom variables.  A 
learner may use different methods even on very similar problems, and any new method competes 
for a long time with older methods and may not be used consistently.  Typical errors can be 
identified for each domain and for many methods (e.g., the reviews referenced above and 
Ashlock, 1998), and ways to help students overcome these errors have been designed and 
studied.  A detailed understanding of methods in each domain enables us to identify prerequisite 
competencies that can be developed in learners to make those methods accessible to all. 
 The constant cycles of mathematical doing and knowing in a given domain lead to learners’ 
construction of representational tools that are used mentally for finding solutions in that domain.  
For example, the counting-word list initially is just a list of words used to find how many objects 
there are in a given group.  Children use that list many times for counting, adding, and 
subtracting.  Gradually, the list itself becomes a mathematical object.  The words themselves 
become objects that are counted, added, and subtracted; other objects are not necessary.  For 
students who have opportunities to learn with understanding, the written place-value notation can 
become a representational tool for multidigit calculations as the digits in various positions are 
decomposed or composed, and proportional statements can become a representational tool for 
solving a range of problems involving ratio and proportion. 
 Learners invent varying methods regardless of whether their classrooms have been focused 
on teaching for understanding or on rote memorizing of a particular method.  In classrooms 
where there is teaching for understanding, however, a wider range of effective methods is 
developed.  In classrooms in which rote methods are used, learner’s inventiveness is often 
focused on generating many different kinds of errors, most of which are partially correct 
methods created by a particular misunderstanding.  Thus, even in traditional classrooms focused 
on memorizing standard computational methods, learners are not passive absorbers of 
knowledge.  They build and use their own meaning and doing, and they generalize and 
reorganize this meaning and doing. 
 Multidigit addition, subtraction, multiplication, and division solution methods are called 
algorithms.  An algorithm is a general multistep procedure that will produce an answer for a 
given class of problems. Computers use many different algorithms to solve different kinds of 
problems.  Inventing new algorithms for new kinds of problems is an increasingly important area 
of applied mathematics.  Throughout history and at present around the world, many different 
algorithms have been invented and taught for multidigit addition, subtraction, multiplication, and 
division.  Different algorithms have been taught at different times in U.S. and Canadian schools.  
Each algorithm has advantages and disadvantages.  Therefore, the decisions to be made about 
computational fluency concern in part the algorithms that might be supported in classrooms and 
the bases for selecting those algorithms.  This issue is pursued in the discussion of particular 
mathematical domains as I identify particularly powerful algorithms. 
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 One goal of the following sections is to underscore that it is possible to understand various 
computational methods.  Because such understanding has not been a goal of school mathematics 
for most of the past century, most adults in charge of making educational decisions have not had 
an opportunity to understand the standard algorithms or to appreciate the wide variety of 
algorithms that are possible.  Most teachers also have not had that opportunity, and most 
textbooks do not provide sufficient help with such understanding.  This paper aims at 
demonstrating that such understanding can be facilitated in children for accessible algorithms if 
so-called quantity supports are used for understanding the meanings of the numbers, notations, 
and steps in the accessible algorithm.  This understanding is not in conflict with developing 
computational fluency but rather is a foundation for it.  Children need supported practice with 
whatever methods they are using if they are to become more fluent in orchestrating the several 
steps in any algorithm.  Understanding can serve as a continual directive toward correct steps and 
as a constraint on the many creative calculating errors invented by students taught algorithms by 
rote.  Because all algorithms are not equally accessible to understanding (e.g., many sacrifice 
comprehensibility so as to save space in writing), I describe at least one algorithm that has been 
demonstrated to be accessible to a wide range of students. My criteria for such accessible 
algorithms are that they scaffold the understanding of key steps in the domain, generalize readily 
to large numbers, have variations that provide for individual differences in thinking, and are 
procedurally simple to carry out (they require the minimum of computational subskills so that 
valuable learning time is not required to bring unnecessary subskills to the needed level of 
accuracy). 

Single-Digit Computation: Much More Than “Learning the Facts” 
 Learning single-digit addition, subtraction, multiplication, and division has for much of a 
century been characterized in the United States and Canada as “learning math facts.”  The 
predominant learning theory was of these facts as rote paired-associate learning in which each 
pair of numbers was a stimulus (e.g., 7 + 6) and the answer (13) needed to be memorized as the 
response to that stimulus.  “Memorizing the math facts” has been a central focus of the 
mathematics curriculum, and many pages of textbooks presented these stimuli, to which children 
were to respond with their memorized response. 
 This view of how children learn basic single-digit computation was invalidated by one line 
of research earlier in the century (by Brownell, 1956/1987) and by much research from all over 
the world during the last thirty years.  We now have very robust knowledge of how children in 
many countries actually learn single-digit addition and subtraction.  Below I explore the research 
for addition in some depth both because it is the largest body of research and to set the scene for 
understanding calculation in other areas.  The research in other areas is then summarized more 
briefly. 
Single-Digit Addition and Subtraction 
 Single-digit addition.  Some research throughout the century (e.g., Brownell, 1956/1987) 
presented a complex view of children as using a variety of methods.  Substantial research now 
indicates that children do move through an experiential progression of single-digit addition 
methods (e.g., see reviews in Fuson, 1992a, 1992b; Siegler, this volume).  These methods are not 
ordinarily taught in the United States, Canada, and many other countries.  The methods are also 
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invented by adults whose cultures are stimulating new demands for calculating (Saxe, 1982).  
Analyses of these methods reveal that learners build later methods from earlier methods by 
chunking, recognizing and eliminating redundancies, using parts instead of entire methods, and 
using their knowledge of specific numbers.  Thus, the methods seem to be accessible to almost 
all learners by natural and general learning processes.  When these more-advanced methods are 
not supported in the classroom, however, several years separate the earliest and latest users of 
advanced methods.  In contrast, helping children progress through methods can lead all first 
graders to methods that are efficient enough to use for all later multidigit calculation. 
 Children’s tools for an initial understanding of addition are the counting word list (“one, 
two, three, four,” etc.), the ability to count objects, some indicating act (e.g., pointing, moving 
objects) that ties words said to objects counted (one at a time), and the so-called count-cardinal 
knowledge that the last count word said tells how many objects there are in all.  Many but not all 
children in the United States and Canada learn these tools in the preschool years.  With these 
tools, addition can be done orally using concrete situations that are comprehensible to young 
learners.  They count out objects for the first addend, count out objects for the second addend, 
and then count all of the objects (count all). This general counting-all method then becomes 
abbreviated, internalized, chunked, and abstracted as children become more experienced with it. 
 The major steps in this worldwide learning progression are shown in Figure 1 (various 
minor abbreviations and mini-steps are neither shown in Figure 1 nor discussed here).  Children 
notice that they do not have to count the objects for the first addend but that they can start with 
the number in one addend and count on the objects in the other addend (count on).  Children 
count on with objects.  They then begin to use the counting words themselves as countable 
objects and keep track of how many words are counted on by using fingers or auditory patterns 
(the counting list has become a representational tool).  With time, children chunk smaller 
numbers into larger numbers and use thinking strategies in which they turn an addition they do 
not know into an addition they do know.  In the United States and Canada, this conversion is 
usually made by using a double addition (2 + 2, 3 + 3, etc.).  These doubles are learned very 
quickly.  As noted in Figure 1, throughout this learning progression, particular addition 
combinations move into the category of being rapidly recalled rather than solved in some way.  
Individuals vary in which sums become recalled readily, though doubles, sums that involve 
adding 1, and combinations of small numbers are the most readily recalled sums for most 
children. 

Insert Figure 1 about here; see Figure 1 at the end of this paper 

 In many other parts of the world, children are taught a general thinking strategy: Make a 
ten by giving some from one addend to the other addend.  Children in the United States or 
Canada who speak English seldom invent this “make a ten” method.  Nor are they taught it in 
textbooks.  But the method is taught in first grade in China, Japan, Korea, and Taiwan (Fuson & 
Kwon, 1992; Fuson, Stigler, & Bartsch, 1988).  This method is facilitated by the number words 
in these countries: “ten, ten one, ten two, ten three,” etc.  Many children in these countries also 
learn numbers and addition using a ten-frame: an arrangement of small circles into 2 rows of 5.  
This pattern emphasizes 6, 7, 8, and 9 as 5 + 1, 5 + 2, 5 + 3, and 5 + 4.  Work with this visual 
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pattern enables many children to “see” these small sums under ten as using a five-pattern.  For 
example, some Japanese adults report adding 6 + 3 by thinking or visualizing [(5 + 1) plus 3] = 5 
+ 4 = 9.  This reduction of 6 + 3 to 5 + 1 + 3 = 5 + 4 = 9 is done very rapidly and without effort, 
as automatically as recall the sum.  The ten-frame is also used to teach the make-a-ten method.  
For example, 8 has 2 missing in the ten-frame, so 8 + 6 requires 2 from the 6 to fill the ten-frame, 
leaving 4 to make 10 + 4 = 14.  By the end of first grade, most children in these Asian countries 
rapidly use these five-patterns or ten-patterns to add single-digit numbers mentally. 
 The make-a-ten method is also taught in some European countries.  There are three 
prerequisites that children must learn in order to use the make-a-ten method effectively.  They 
must know what number makes ten with each number up to ten (e.g., 10 = 8 + 2 or 6 + 4 or 7 + 
3), be able to break apart a number into any of its two addends (in particular, for numbers over 
ten, to make ten plus the remainder), and know 10 + n (e.g., 10 + 5 = 15).  In countries that teach 
the make-a-ten method, these prerequisites are developed before the method is introduced.  
Many first and even second graders in the United States do not have these prerequisites 
consolidated, and they are rarely developed sufficiently in textbooks.  Counting on does not help 
United States or Canadian children to move on to a make-a-ten method for two reasons.  English 
counting words do not signal a change at ten as do the East Asian words “ten, ten one, ten two.”  
And the fingers do not use or show a ten because most children use their fingers to keep track of 
the words counted on (“8, 9, 10, 11, 12, 13, 14”).  This use is in contrast to that of Korean or 
some Latino children, who make the first number on their fingers and then count on (“1, 2, 3, 4, 
5, 6 is 14”) as they use 6 more fingers: 2 more to fill 10 fingers and 4 more over ten.  This latter 
way of counting on does support a make-a-ten method. 
 Textbooks in the United States typically have shown little understanding of children’s 
progression of methods.  They moved directly from counting all (e.g., 4 + 3 shows 4 objects and 
then 3 objects) to using numerals only.  Children are then expected to begin to “memorize their 
facts” (which they cannot do because no answers are given).  Children respond by following the 
experiential trajectory of methods discussed above and summarized in Figure 1.  They use their 
fingers or make little marks to count all, eventually invent counting on, and may go on to invent 
thinking strategies, especially using doubles.  As indicated in Figure 1, particular sums all along 
the way become recalled sums (the answer is produced rapidly and automatically and without 
knowledge of a solution method that can be reported).  Children are not supported by most 
textbooks to learn these strategies or to move through this progression of methods.  Nor are they 
typically given visual supports such as a ten-frame for adding by using patterns of numbers.  Or 
if these alternatives are provided, they are often not orchestrated with sufficient practice of 
subskills or methods to reach mastery. 
 This lack of fit between what is in textbooks and how children think is exacerbated by 
other features of the textbook treatment of addition.  Compared with other countries, the United 
States has had a very delayed placement of topics in the elementary school curriculum (Fuson, 
1992a; Fuson, Stigler, & Bartsch, 1988).  Almost all of first grade has been spent on addition and 
subtraction below ten.  Such simple problems have then also been emphasized and reviewed in 
Grade 2, resulting overall in doing many more of the easier sums and relatively fewer of the 
more difficult sums (Hamann & Ashcraft, 1986).  Thus, in contrast to East Asian children who 
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are shown in first grade effective methods for solving the difficult sums over ten in visually and 
conceptually supported ways, many U.S. children have had little opportunity to solve such 
problems in first grade and have not been supported with any effective methods to do so. 
 Intervention studies indicate that teaching counting on in a conceptual way makes all 
single-digit additions accessible to U.S. first graders, including learning-disabled students and 
English-as-a-second-language students (Fuson & Fuson, 1992; Fuson & Secada, 1986).  These 
results have been replicated in a range of urban and suburban classrooms in English and in 
Spanish (see reviews in Fuson, 1992a, 1992b, as well as Fuson, Perry, & Kwon, 1994; Fuson, 
Perry, & Ron, 1996).  Children in the United States show numbers on their fingers in various 
ways, some starting with the index finger, some with the thumb, and some with the little finger.  
Any of these are effective ways to keep track of the second addend while counting on.  With 
practice, counting on can be done rapidly and accurately enough to be used in multidigit 
calculations of all kinds.  Conversations with many adults reveal the use of counting on by adults 
in everyday uses where accuracy counts.  Counting on is a powerful, general, and rapid-enough 
method for most purposes. 
 There is to date very little research with U.S. or Canadian children on using spatial patterns 
for learning addition with small numbers.  This approach might be very powerful, especially for 
some children who have difficulty with sequential information or who have strong spatial 
competence.  There are a few studies on using ten-frames or other visual supports for the make-
a-ten method (Thornton, Jones, & Toohey, 1983), but none on developing the three prerequisites 
for that method.  Some Latino children use finger methods that support the make-a-ten method 
(Fuson, Perry, & Kwon, 1994; Fuson, Perry, & Ron, 1994) and go on to invent and use it.  How 
accessible the method is to all children is not clear, given the irregularities in the English number 
words.  That it is taught in France and some other European countries with similar irregularities 
in the words used for the teens suggests that it is worth trying in North America to see how rapid 
and automatic it could become.  It is very useful in multidigit addition because it gives the 
answer already prepared for regrouping (carrying, trading) as, for example, 1 ten and 4 ones. 
 The prerequisites for the make-a-ten method are important learning goals themselves, so 
research would be helpful for understanding how to help students learn them rapidly.  More 
conceptual work focused on the meaning of teens words and written numbers as tens and ones 
would be especially valuable.  Several studies using different methods indicate that for many 
U.S. children, what you see in a teen number is what you get: They see 15 as a one and a five, 
not as a ten and a five (see the reviews in Fuson, 1992a, 1992b).  Many children speaking 
European languages have similar difficulties.  It is clear, however, that U.S. children can learn 
the meanings of teens as tens if they are supported to do so (Fuson, Smith, & Lo Cicero, 1997). 
 Single-digit subtraction.  Subtraction follows a progression that is similar to that for 
addition in its major categories (see Figure 1).  Most children in the United States, however, 
invent counting-down methods that model the taking away of numbers from the total.  Counting 
down is difficult (e.g., try generating an alphabet list backwards from K to C), and it takes a long 
time for some children to learn.  Counting down is also subject to more errors because the 
cardinal correspondence of the objects in the addends is not clear.  Children use two distinct 
counting-down methods.  One starts with the total, and the other starts with the word before the 
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total.  Many children create combinations of the two that give an answer that is either one too 
many or one too few.  Many other children make errors when counting backwards or are very 
slow at it. 
 In contrast, in Latin America and many countries in Europe, children learn to subtract by 
counting up from the known addend to the known total.  For example, 14 – 8 is solved by 
counting up from 8 to 14: 8 things I have, so 9, 10, 11, 12, 13, 14, that’s 6 more I counted to get 
to 14.  Counting up is even easier than counting on because you only have to listen for the total; 
you do not have to know and monitor a finger pattern for an addend as you count.  So counting 
up makes subtraction easier than addition. 
 Intervention studies with U.S. first graders that help them see subtraction situations as 
taking away the first x objects enables them easily to learn a counting-up-to process for 
subtraction.  All children, including learning-disabled and special education students, were able 
to learn all single-digit subtraction combinations in first grade.  This result was revolutionary for 
first-grade teachers, who typically see children having much more difficulty with subtraction 
than with addition.  U.S. children invent counting on for situations in which an unknown quantity 
is added to a known quantity.  Many go on later to use counting on in taking-away subtraction 
situations because counting on is easier (Carpenter & Moser, 1984).  But that invention is 
delayed for many children until second grade, and many never subtract by counting up.  
Discussing counting up to for taking-away situations in first grade makes it accessible to all 
children then. 
 Less research is available about thinking strategies in subtraction than in addition.  In East 
Asia, two methods using ten are taught, and different children use each of these.  One is just fast 
counting on with chunking at ten: 15 – 9 is 9 + 1 (up to ten) + 5 (up to 15), so 9 + 6 = 15.  The 
other goes down over ten: 15 – 9 is 5 down to ten, and 1 more down to 9 is 6. 
 Summary.  The unitary progression of methods used worldwide by children stems from the 
sequential nature of the list of number words.  This list is first used as a counting tool, and then it 
becomes a representational tool in which the number words themselves are the objects that are 
counted (Bergeron & Herscovics, 1990; Fuson, 1986b; Steffe, Cobb, & von Glasersfeld, 1998).  
Counting becomes abbreviated and rapid.  Some (or in some settings, many) children then chunk 
numbers using thinking strategies.  These chunking actions turn sums children do not know into 
sums they do know (often using doubles).  During this progression, which may last into third or 
even into fourth or fifth grade for some children (because they are not helped through the 
progression), individual children use a range of different methods on different problems.  
Learning-disabled children and others having difficulty with mathematics do not use methods 
that differ from this progression.  They are just slower than others in the progression (Geary, 
1994; Ginsburg & Allardice, 1984; Goldman, Pellegrino, et al., 1988; Kerkman & Siegler, 1993).  
Counting on can be made accessible to first graders; it makes possible rapid and accurate 
addition of all single-digit numbers.  Single-digit subtraction is usually more difficult than 
addition is for U.S. children.  Learning to think of subtraction as counting up to the known total, 
as is done in many other countries, makes subtraction as easy as, or easier than, addition.  But at 
present, the counting-up-to method rarely appears in textbooks.  Research is needed on using 
spatial patterns to make sums and differences below ten accessible visually, on supporting 
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thinking strategies and their prerequisites for all children, and on effective organizations of 
practice and support that will enable all children to progress to rapid and accurate methods of 
single-digit sums and differences by the end of first grade (at least counting on and counting up 
to). 
Single-Digit Multiplication and Division 
 There is much less research on single-digit multiplication and division than on addition and 
subtraction.  U.S. students do go through an experiential progression of multiplication methods 
that is somewhat similar to that for addition (e.g., Anghileri, 1989; Baek, 1998; Mulligan & 
Mitchelmore, 1997; Steffe, 1994).  Eventually they make equal groups and count them all.  They 
learn count-on lists for different products (e.g., counting by 4s gives 4, 8, 12, 16, 20, etc.).  They 
then count up and down these lists, using their fingers to keep track, to find different products.  
They may use a combination method in which they enter a list at a point they know and then 
count on by ones to get to the product (e.g., to find 5 ´ 6, 5 ´ 5 is 25, and 26, 27, 28, 29, 30 is 5 
more).  They invent thinking strategies in which they derive related products from products they 
know. 
 As with addition and subtraction, many of these methods are developed as individual 
inventions by children who are not supported by textbooks or instruction.  Some very recent 
textbooks are supporting children’s pattern finding and use of count-by lists in multiplication.  
But most older books used the nineteenth-century model of learning multiplication by 
memorizing isolated facts using rote associations. 
 To see the problems with this limited view of rote “memorizing of multiplication facts,” 
consider Figure 2.  The figure shows a table of multiplication products using an alphabet 
analogy: Suppose you were to learn the multiplication combinations for a new counting list (C, 
D, E, F, G, H, I, J, K).  We pose this task so that you will not already know the answers.  Look at 
the table and see all of the interference involved in learning each of these facts separately as a 
rote response to 2 stimuli.  It is a formidable task because the “numbers” all look so similar (they 
are similar, just as 1, 2, 3, 4, etc., are for young children).  Look at the table for a while, and 
think how you might go about this formidable task in another way.  See all of the patterns you 
can find.  Do you see a pattern for multiplying by C (look at the top row or left column)?  (I give 
all of these patterns in the next paragraph to give you an opportunity to see some of them for 
yourself.)  Do you see a pattern for multiplying by CL (look at the last column or the bottom 
row)?  Look at the interesting pattern for G.  Can you find a pattern for D?  The patterns for E 
and F are more subtle.  K has a wonderful pattern (can you explain it?). 
 

Insert Figure 2 about here; see Figure 2 at the end of this paper 

  

 Finding and using patterns greatly simplifies the task of learning multiplication 
combinations.  Moreover, such finding and describing of patterns is one of the very essences of 
mathematics.  Thus, approaching multiplication learning as pattern finding both simplifies 
greatly the task and is a core mathematical approach.  (The patterns in the table are as follows: C 
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just copies the number being multiplied to give the same number as the product.  Multiplying by 
CL just adds an L, as D becomes DL, E becomes EL, etc.  G products alternate between G and L 
in the ones place, and the tens place has two Cs, two Ds, two Es, etc.  The K pattern has the tens 
place increasing by one and the ones place decreasing by one; the total of the tens and ones 
numbers is K.  This pattern occurs because as you go over each successive ten in the number list, 
one more of each group of K has to go to make a whole ten: in English number words and 
numbers, 2 nines are 2 tens – 2 = 20 – 2 = 18, 3 nines are 3 tens - 3 = 30 – 3 = 27, etc.) 
 After patterns are identified, children still need much experience to produce count-by lists 
and individual products rapidly.  There is little research about how to accomplish this fluency.  
There is also little research about how to link the patterns in the numbers to the underlying 
groupings spatially or conceptually, that is, how to relate all of the different groupings to the 10-
groupings in the base-ten multidigit numbers.  Nor is there much research about how children 
learn products in other countries.  Informal inquiries of researchers outside the United States 
suggest some methods that might be pursued.  In France, where children learn multiplication 
effectively (Lemaire & Siegler, 1995), an elaborate yearlong social organization may be used 
that involves an extra mathematics period and extra help from the teacher for those who need it.  
In Japan, oral rhythmic chanting of the tables is used; this approach is facilitated by the structure 
of the Japanese number words.  In China, commutativity (4 ´ 7 = 7 ´ 4) is focused upon heavily, 
reducing the number of products by half (notice the line of symmetry in Figure 2 moving from 
top left to bottom right).  The effectiveness of this approach is reflected in the reaction-time 
patterns of Chinese adults, which differ from those of U.S. adults (LeFevre & Liu, 1997). 
 Division combinations can be approached in terms of the related products.  For example, 
72/9 = ? can be thought of as 9 ´ ? = 72.  Again, research has as yet little to offer.  It is not clear 
whether the division-multiplication relationship can be introduced very early, with quotients 
learned and practiced at the same time as products, or whether products need to be learned first.  
How to help children learn and use easily all of the different symbols for division (15/3, 15 ÷ 3, 
15
3 , and the reversed 3 15 is also not clear. 

 The general methods of counting on for addition and counting up for subtraction are readily 
learned.  There are no similar rapid general methods for single-digit multiplication and division.  
Rather, there is much specific pattern-based knowledge that needs to be orchestrated into 
accessible and rapid-enough multiplication and division.  Research is needed into ways to 
support such pattern finding and then to organize the necessary follow-up specific learning 
conceptually, motivationally, and socially in classrooms if this gatekeeper knowledge is to be 
learned by U.S. children by the end of Grade 3, as it is in other countries in which students’ 
mathematical performance is high. 
 Traditional learning of addition and multiplication facts creates interference between these 
two operations (LeFevre, Kulak, & Bisantz, 1991; Lemaire, Barrett, Fayol, & Abdi, 1994; Miller 
& Paredes, 1990).  Thus, when children begin learning multiplication combinations, their 
addition performance decreases.  This phenomenon is a strong reason to encourage learning of 
general addition and subtraction methods; these methods do not interfere with multiplication or 
division.  Interference between addition and multiplication for combinations involving 0 and 1 is 
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particularly great.  Children readily learn the patterns involved in 7 + 0, 7 + 1, 7 ´ 0, and 7 ´ 1, 
but they tend to confuse them.  These patterns are complex across operations because although 7 
+ 0 = 7 ´ 1, these look maximally dissimilar. 
 Timed tests have been a controversial part of single-digit computational practice.  There is 
no definitive evidence about their use.  Certainly they can be counterproductive and feed math 
anxiety if they are used in any of the following ways: If they are used before students have 
conceptual knowledge in a domain that enables them to generate solutions; if they are used in a 
competitive fashion, so that some students are losers, rather than focusing on monitoring and 
improving their own individual progress; or if they are used in a nonsupportive environment so 
that students feel isolated or hopeless.  In some situations, students enjoy timed tests as a 
challenge, and individuals can watch their own progress. 

Multidigit Addition and Subtraction 
 There is considerable research on the ways in which children learn various multidigit 
addition and subtraction methods, though not nearly as much research as on single-digit addition 
and subtraction.  In single-digit addition and subtraction, the same learning progression occurs in 
many different countries in spite of not being taught.  Multidigit addition and subtraction depend 
much more on what is taught, and different children even within the same class may follow 
different learning progressions and use different methods.  Multidigit addition and subtraction 
knowledge seems to consist much more of different pieces that are put together in different 
orders and in different ways by different children (e.g., Hiebert & Wearne, 1986). 
Difficulties with Words and Numbers 
 As with the teens words, the English number words between 20 and 100 complicate the 
teaching and learning task for multidigit addition and subtraction.  English names the hundreds 
and thousands regularly, but it does not do so for the tens.  For example, 3333 is said “3 thousand 
3 hundred thirty 3” not “3 thousand 3 hundred 3 ten 3.”  English-speaking children must learn 
and then use a special sequence of decade words for 20, 30, 40, and so forth.  This sequence, like 
the teens, has irregularities.  Furthermore, teens words and decade words sound alike: In a 
classroom, it is often difficult to hear the difference between “eighteen” and “eighty.”  The same 
numbers 1 through 9 are reused to write how many tens, hundreds, thousands, and so forth.  
Whether it is 3 tens or 3 hundreds or 3 thousands is shown by the relative position of the 3: how 
many places to the left of the number farthest to the right is the 3?  Relative position is a complex 
concept.  French is even more complex, with its use of 20 as a base in some number words. 
 The written place-value system is a very efficient system that lets people write very large 
numbers.  But it is very abstract and can be misleading: The digits in every place look the same.  
To understand the meaning of the digits in the various places, children need experience with 
some kind of size quantity supports (e.g., manipulatives, or objects that they can handle, such as 
buttons or beads) that show tens to be collections of ten ones and show hundreds to be 
simultaneously ten tens and one hundred ones, and so on.  Various kinds of such supports have 
been designed and used in teaching the written system of place value.  Some support 
understanding the sizes involved in place values, and some can support understanding patterns in 
the numbers (e.g., a hundreds grid).  Classrooms, however, rarely have enough such supports for 
children themselves to use them—especially size quantity supports—and many classrooms do 
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not use anything.  Such supports are rarely used in multidigit addition and subtraction; when 
used, they may be used alone at first to get answers without sufficient linking to a written method 
that is related to the manipulative method. 
 As a result, many studies indicate that U.S. children do not have or use a quantity 
understanding of multidigit numbers (see reviews in Fuson, 1990, 1992a, 1992b).  Instead, 
children view numbers as single digits side by side: 827 is functionally “eight two seven” and not 
8 groups of 1 hundred, 2 groups of ten, and 7 single ones.  Children make many different errors 
in adding and subtracting multidigit numbers, and many who add or subtract correctly cannot 
explain how they got their answers. 
Teaching for Understanding and Fluency 
 In contrast, research on instructional programs in the United States, Europe, and South 
Africa indicate that focusing on understanding multidigit addition and subtraction methods 
results in much higher levels of correct multidigit methods and produces children who can 
explain how they got their answers using quantity language (Beishuizen, 1993; Beishuizen, 
Gravemeijer, & van Lieshout, 1997; Carpenter, Franke, Jacobs, & Fennema, 1998; McClain, 
Cobb, & Bowers, 1998; Fuson & Briars, 1990; Fuson & Burghardt, 1997, in press; Fuson, Smith, 
& LoCicero, 1997; Fuson, Wearne, et al., 1997).  Characteristics of all of these approaches are 
that students used some kind of visual quantity support to learn meanings of hundreds, tens, and 
ones, and these meanings were related to the oral and written numerical methods developed in 
the classrooms.  Many different addition and subtraction methods were developed in these 
studies, often in the same classrooms (see Fuson, Wearne, et al., 1997, and Fuson & Burghardt, 
in press, for summaries of many methods).  In most of these studies, children invented various 
methods and described them to each other, but in some studies conceptual supports were used to 
give meaning to a chosen algorithm.  Many studies were intensive studies of children’s thinking 
in one or a few classrooms, but some involved 10 or more classrooms, including one study of all 
second-grade classrooms in a large urban school district (Fuson & Briars, 1990).  In all studies, a 
strong emphasis was placed on children understanding and explaining their method using 
quantity terms (e.g., using hundreds, tens, ones or the names of the object supports being used). 
 Roughly three classes of effective methods can be used for multidigit addition and 
subtraction, although some methods are mixtures.  Counting list methods are extensions of the 
single-digit counting methods.  Children initially may count large numbers by ones, but these 
unitary methods are highly inaccurate and are not effective.  All children need to be helped as 
rapidly as possible to develop prerequisites for methods using tens.  In counting-list methods 
using tens, children count on or count up by tens and by ones.  These methods generalize readily 
to counting on or up by hundreds, but become unwieldy for larger numbers.  In decomposing 
methods, children decompose numbers so that they can add or subtract the units that are alike 
(add tens to tens, ones to ones, hundreds to hundreds, etc.).  These methods generalize easily to 
very large numbers.  Recomposing methods are like the make-a-ten or doubles methods.  The 
solver changes both numbers by giving some of one number to another number (in adding) or by 
changing both numbers equivalently to maintain the same difference (in subtracting).  These 
methods are highly useful in special cases such as 398 + 276: the 276 gives 2 to make the 398 
into 400, so 400 + 274 is 674.  But they do not generalize easily to all numbers, and the addition 
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and subtraction methods may interfere with each other if students (or teachers) do not understand 
them well enough. 
 Different kinds of conceptual supports (e.g., manipulatives) have been used successfully in 
classroom research.  Each has its advantages and disadvantages, and each supports some 
methods more clearly than others (see Fuson & Smith, 1997, for an analysis).  Number lines and 
100s grids of numbers (10 rows showing 1 to 10, 11 to 20, etc. to 100) support counting-list 
methods better.  These supports do not generalize easily to numbers above 100.  Children may 
use the 100s grid in particular by rote to get answers without really seeing tens on it.  
Decomposition methods are facilitated by supports that enable the different quantity units to be 
added and subtracted physically.  For example, base-ten blocks show ones, tens (ten attached 
centimeter cubes), hundreds (a 10 cm by 10 cm flat block), and thousands (a 10 cm by 10 cm by 
10 cm large cube).  These blocks have been used successfully for children inventing their own 
methods and for understanding chosen methods. 
 Because of the expense and management problems posed by objects that are conceptual 
supports, some studies have also introduced some system of drawing ones, tens, and hundreds 
(e.g., circles or small dashes for ones, vertical sticks for tens, and squares for hundreds) or of 
recording on an open number line.  Such drawings leave records for a teacher to see after class, 
and children can draw figures on the board to explain their method.  The drawings are also easy 
to link to the written numbers so that the numbers begin to take on quantity meanings for 
children. 
 The function of size quantity supports is to suggest meanings that can be attached to the 
written numerals and to the steps in the solution method with numbers.  Therefore, methods of 
relating the size quantity supports and the written method through linked actions and through 
verbal descriptions of the numerical method are crucial.  However, in the classroom, supports are 
often used without recording anything except the answer at the end, and then students are led to 
use written methods without linking them to the steps taken with the supports.  Thus, the written 
numerals do not necessarily take on the meaning of tens, hundreds, and so forth, and the steps in 
the numeral method may be thought of as involving only single digits rather than their actual 
quantity meanings.  This development leaves students vulnerable to the many errors they create 
without the meanings to direct or constrain them.  Even for students who initially learn a 
meaningful method, the appearance of a multidigit number as a collection of single digits may 
cause errors to creep in.  An important step in maintaining the meaning of the steps is to have 
students occasionally explain their method, using the names for their quantity support (e.g., big 
cubes, etc., or money). 
Solution Methods and Accessible Algorithms 
 Many different methods of multidigit addition and subtraction are invented by children and 
are used in different countries.  There is not space here to describe all of them or to analyze their 
respective advantages and disadvantages.  I have, however, selected two addition methods and 
one subtraction method for discussion.  These methods are especially clear conceptually, are 
easy for even less-advanced students to carry out, and are less prone to errors than many other 
methods are.  I also show the addition and the subtraction algorithms that are currently taught 
most frequently in textbooks in the United States and Canada. 
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 In Figure 3, the algorithm on the top left is the addition method currently appearing in most 
U.S. textbooks.  It starts at the right, in contrast to reading, which starts at the left.  Most methods 
that children invent start at the left, perhaps because they are used to reading from the left and 
perhaps because number words in English are read starting at the left.  The current addition 
algorithm has two major problems.  One is that many children object initially (if they are in a 
position in which mathematical objections can be voiced) to putting the little 1s above the top 
number.  They say that you are changing the problem.  And in fact, this algorithm does change 
the numbers it is adding, as it proceeds by adding in these carries to the digits in the top number.  
The second method in the top row of Figure 3 does not change the top number: The new 1 ten is 
written down in the space for the total on this line (children using base-ten blocks in Fuson & 
Burghardt, 1993, in press, invented this method so that they did not change the answer as they 
went).  It is also easier to see the total 14 ones when the 1 is written so close to the 4.  The 
second problem with the present U.S. algorithm is that it makes single-digit addition difficult.  
You must add in the 1 to the top number, remember it even though it is not written, and add that 
remembered number to the bottom number.  If, instead, you add the two numbers you see, you 
may forget to go up to add on the 1 ten (or 1 hundred).  The second method solves this problem: 
You just add the two numbers you see and then increase that total by 1.  This method makes the 
adding much easier for less-advanced children. 
 

Insert Figure 3 about here; see Figure 3 at the end of this paper 

  

 Both of these methods require that children understand two aspects of multidigit numbers: 
(1) that they must add like units to each other; and (2) that when they get 10 or more of anything, 
they must give 1 group of ten of those things to the next left place and record the remaining 
things.  The second understanding has been called “carrying” or “regrouping” or “trading.”  This 
grouping is done after the adding of each kind of unit.  The make-a-ten method of single-digit 
addition described earlier is clearly helpful for such grouping because it makes a number into 1 
ten and some ones.  Multidigit addition is a useful place to use this make-a-ten method.  Unless 
the structure of teen numbers as 1 ten and some ones is strongly experienced in the classroom, 
however, children may have trouble knowing how to break a teen number for regrouping.  
Again, the teen words in English obfuscate the tens, and all calculation is carried out by the 
solver using number words (even though these words may only be said internally).  In one study 
with base-ten blocks, some first and second graders who were successfully adding 4-digit 
numbers and explaining their methods still had trouble with the grouping step when they did not 
use blocks.  They knew that each teen word had a ten and some ones; they just did not know how 
many ones were in a given teen word.  Instead, they used their knowledge of written numbers to 
write their total off to the side: For example, they said, “8 plus 6 is fourteen” and wrote 14, 
which they then read as 1 ten and 4 ones.  Work on teens as 1 ten and x ones would have been 
helpful to these children. 
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 Method B in Figure 3 separates the two major steps in multidigit adding.  The total for 
adding each kind of multiunit is written on a new line, emphasizing that you are adding each 
kind of multiunit.  The carrying-grouping-trading is done as part of the adding of each kind of 
multiunit: The new 1 ten of the next larger multiunit is simply written in the next-left column.  
One then does the final step of multidigit adding: Add all of the partial additions to find the total.  
Method B can be done in either direction (Figure 3 shows the left-to-right version).  Because you 
write out the whole value of each addition (e.g., 500 + 800 = 1300), this method facilitates 
children’s thinking about and explaining of how and what they are adding. 
 The drawings at the far right can be used with any of the three methods shown in Figure 3 
to support understanding of the major components of the methods.  The different sizes of the 
ones, tens, and hundreds in the drawings support children’s adding of those like quantities to 
each other.  Ten of a given unit can be encircled to make 1 of the next higher unit (10 ones = 1 
ten, 10 tens = 1 hundred, 10 hundreds = 1 thousand).  The issue for each algorithm then is how to 
record the adding of each kind of unit, the making of each 1 new larger unit from 10 of the 
smaller units, and the adding of the partial additions to make the total.  Circling the new ten units 
can also support the general make-a-ten single-digit methods. 
 Under the drawing are summarized the two vital elements of using drawings or objects to 
support understanding of addition methods.  First is a long Stage 1 in which the objects or 
drawings are linked to the steps in the algorithms to give meanings to the numerical notations in 
those algorithms.  A second but crucial Stage 2 then lasts an even longer time (over years) in 
which students only carry out the numerical algorithm but occasionally explain it using words 
describing quantity objects or drawings so that meanings stay attached to the steps of the 
algorithm.  Stage 2 is vital because of the single-digit appearance of the written numerals.  
Numerals do not facilitate correct methods, or inhibit incorrect methods, the way the objects and 
drawings do, and errors can creep into already understood methods, especially as children learn 
other solution methods in other domains. 
 Two subtraction methods are shown in Figure 3.  The method on the left is the most widely 
used current U.S. algorithm.  It moves from right to left, and it alternates between the two major 
subtraction steps: Step 1 is ungrouping (borrowing, trading) to get 10 more of a given unit so that 
unit can be subtracted (necessary when the top unit is less than the bottom unit), and Step 2 is 
subtracting after the top number has been ungrouped.  The regrouping may be written in different 
ways (e.g., as a little 1 beside the 4 instead of crossing out the 4 and writing 14 above).  The 
alternating between the two major subtracting steps presents three kinds of difficulties to 
students.  One is initially learning this alternation.  Two is then remembering to alternate the 
steps.  The third is that the alternation renders students susceptible to the pervasive subtracting 
error: subtracting a smaller top number from a larger bottom number (e.g., doing 62 - 15 as 53).  
When moving left using the current method, a solver sees two numbers in a column while 
primed to subtract.  For example, after ungrouping in 1444 – 568 to get 14 in the rightmost 
column and subtracting 14 – 6 to get 8, one sees 3 at the top and 6 at the bottom of the next 
column.  Automatically the answer 3 is produced (6 – 3 = 3).  This answer must be inhibited 
while one thinks about the direction of subtracting and asks whether the top number is larger 
than the bottom (i.e., asks oneself whether regrouping or borrowing is necessary). 
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 The accessible subtraction method shown in the bottom middle of Figure 3 separates the 
two steps used in the current method.  First, a student asks the ungrouping (borrowing) question 
for every column, in any direction.  The goal is to rewrite the whole top number so that every top 
digit is larger than the bottom digit.  This rewriting makes the conceptual goal clearer: You are 
rearranging the units in the top number so that they are available for subtracting like units.  It 
also prevents the ubiquitous top-from-bottom error because you fix everything (ungrouping if 
necessary) before doing any subtracting.  Doing the fixing in any direction allows children to 
think in their own way.  The second major step is then to subtract the digits in every column, 
which also can be done in any order. 
 The drawing at the bottom right of Figure 3 shows how a size drawing or size objects can 
support the two aspects of multidigit subtracting.  There are not enough ones, or tens, or 
hundreds to do the needed subtracting, so 1 larger unit is opened up to make 10 of the needed 
units.  The subtraction can be done from this 10, facilitating the “take from ten” single-digit 
subtraction method.  Or students can count up to find the difference in the written number 
problem. 
 The irregular structure of the English words between twenty and ninety-nine continues to 
present problems in multidigit problems because all single-digit and multidigit calculation is 
done using the words as oral intermediaries for the written numbers, and these words do not 
show the tens in the numbers.  Using English forms of the regular East Asian words (“1 ten 4 
ones” for 14) along with the ordinary English number words has been reported to be helpful 
(Fuson, Smith, & Lo Cicero, 1997).  This approach permits children to generalize single-digit 
methods meaningfully.  For example, for 48 + 36, students can use their single-digit knowledge 
and think, “4 tens + 3 tens is 7 tens,” rather than having to think “forty plus thirty is ?” or use 
only single-digit language (“four plus three is seven”), thus ignoring the values of the numbers. 
Textbook and Curricular Issues 
 U.S. textbooks have several problematic features that complicate children’s learning of 
multidigit addition and subtraction methods.  The grade placement of topics is delayed compared 
to that of other countries (Fuson, Stigler, & Bartsch, 1988), and problems have one more digit 
each year so that this topic continues into Grade 5 or even Grade 6.  In contrast, multidigit 
addition and subtraction for large numbers are completed in some countries by Grade 3.  In the 
first grade in the United States, two-digit addition and subtraction problems with no regrouping 
(carrying or borrowing) are given, but no problems requiring regrouping are given until almost a 
year later, in second grade.  Problems with no regrouping set children up for making the most 
common errors, especially subtracting the smaller digit from the larger even when the larger digit 
is on the bottom (e.g., 72 – 38 = 46).  This error is one major reason that on standardized tests 
only 38% of U.S. second graders are accurate on problems such as 72 – 38.  Accessibility studies 
indicate that first graders can solve two-digit addition problems with trading if they can use 
drawings or quantity supports (Fuson, Smith, & Lo Cicero, 1997; Carpenter et al., 1998).  
Because knowing when to make 1 new ten is an excellent use of place-value knowledge, such 
problems can be thought of as consolidating place-value ideas, not just as doing addition.  Giving 
children from the beginning subtraction problems that require regrouping would help them 
understand the general nature of two-digit subtraction.  This topic might well be delayed until 
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second grade because children find two-digit subtraction much more difficult than addition.  But 
second graders learning with quantity supports and with a focus on understanding their methods 
can have high levels of success. 
 Textbooks or approaches characterized as “reform” may have different shortcomings than 
those of traditional textbooks.  No study using a reform approach or focused on teaching for 
understanding has reported children doing worse on multidigit computation (or single-digit 
computation) than children using traditional textbooks.  But a couple of studies have reported 
some children using unitary count-all multidigit strategies as late as Grades 3 and 4, suggesting 
insufficient attention to helping all children learn prerequisite counting and quantity 
understanding for effective methods using tens.  A 5-year longitudinal study following 20 classes 
of children using a reform textbook Everyday Mathematics (EM) suggests other issues that need 
to be considered if U.S. children’s multidigit performance is to improve above that of standard 
textbooks.  Overall, achievement results were very positive (Carroll, Fuson, & Drueck, 2000; 
Carroll & Fuson, 1999): At every grade level, children who used Everyday Mathematics 
outperformed comparison groups using traditional U.S. textbooks on a wide range of topics.  The 
only exception was in single-digit and multidigit addition and subtraction problems, in which 
EM children’s performance was the same as that of comparison children using standard 
textbooks. 
 A focus group of teachers and researchers identified several attributes of the EM 
curriculum or its use in classrooms that seemed to be sources of the lower-than-desired multidigit 
performance.  I summarize these here because they indicate issues that may need to be addressed 
as classrooms move to teaching for understanding.  They are relatively easy to avoid and are 
being addressed in current EM revisions.  Although there was an emphasis in most EM 
classrooms on using alternative methods and explaining them, children were not using quantity 
supports except for the 100s grid.  The grid was usually used as a counting tool without tens and 
ones being explicit on it (the first addend was identified as the square containing 38 rather than 
38 being the 3 rows of ten squares and the 8 squares in the fourth row, and counting was done by 
rote with the vertical ten-jump rarely justified or explained).  Most explanations of methods were 
verbal only, so that less-advanced children had difficulty following the explanations.  A few 
teachers did write numbers on the board as children explained, but writing numbers for all 
problems and also using quantity referents of some kinds (e.g., drawings on the board) would 
have made the explanations more accessible to all children. 
 No meaningful treatment of the standard algorithms was included in the lessons or in most 
classrooms.  Some students inevitably brought the standard algorithms from home, and teachers 
did not know how to help children explain them meaningfully.  Furthermore, because of test 
pressures, some teachers taught standard algorithms right before standardized tests but without 
meaning for the algorithms.  A difficult subtraction method (recomposing both numbers) was 
included in lessons, but its meaning was given insufficient scaffolding.  Some teachers and 
children then confused it with the addition recomposition method, leading to errors (in the 
addition method, one addend is increased and the other addend is decreased by the same amount; 
in the subtraction method, both numbers must be increased or decreased by the same amount to 
maintain the difference). 
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 Many of the multidigit lessons used contexts to give real-world meanings to the numbers 
(e.g., temperature).  But the focus in many lessons was heavily on the context and insufficiently 
on the multidigit processes.  There was an insufficient focus on all children learning prerequisites 
for effective methods.  EM children did better on multidigit combinations in word problem 
situations than in vertical columns.  Their success on word problems is noteworthy, but the errors 
on combinations written in column form indicate insufficient strength of place-value quantity 
meanings in the face of the single-digit appearance of the numbers.  EM did introduce the 
addition method on the right in Figure 3, and many children in some classrooms did use it and 
explain it effectively. 
 This review suggests some central features for effective reform and traditional texts.  Any 
algorithms that are included need to be accessible to children and to teachers, and support needs 
to be provided so that the algorithms are learned with understanding.  The research-based 
accessible methods in Figure 3 were included here to indicate algorithms that are more accessible 
than those presently appearing in most U.S. textbooks.  Further, children need to use quantity 
supports in initial experiences with multidigit solving and multidigit algorithms so that these can 
be learned with meaning.  Finally, students and teachers need to use referents when discussing 
methods so that everyone can follow the discussion.  Drawing quantities can be helpful in such 
discussions. 
Conclusion 
 Recent research clearly indicates that nontraditional approaches can help children come to 
carry out, understand, and explain methods of multidigit addition and subtraction rather than 
only carry out a method.  This higher level of performance can also be accomplished at earlier 
grades than those at which, at present, only answers are expected.  Features of classrooms 
engendering this higher level of performance are as follows: an emphasis on understanding and 
explaining methods; initial use by children of quantity supports or drawings that show the 
different sizes of ones, tens, and hundreds in order to give meanings to methods with numbers; 
and sufficient time and support for children to develop meanings for methods with numbers and 
for prerequisite understandings (these may be developed alongside the development of methods) 
and to negotiate and become more skilled with the complexities of multistep multidigit methods. 
 The research is not yet clear about which quantity supports, which multidigit methods, or 
which details of classroom functioning can maximize learning for all.  The most effective 
approach at present seems to be to make the learning of algorithms more mathematical by 
considering it an important arena of mathematical pattern finding and invention that will use and 
contribute to robust understandings of the place-value system of written numeration.  Meaningful 
discussion of various standard algorithms brought into the classroom from children’s homes 
(e.g., the subtraction algorithm widely used in Latin America and Europe, see Ron, 1998) has an 
important role.  Seeking to discover why each algorithm works provides excellent mathematical 
investigations.  It also seems to be important to share accessible methods with less-advanced 
children so that they have a method they understand and can use. The instructional focus, 
however, should be on their understanding and explaining, not just on rote use.  All three of the 
accessible methods in Figure 3 were invented by children but have also been shared with and 
learned meaningfully by many children.  There may well be other methods not yet discovered (or 
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rediscovered) that are even more powerful.  Comparing methods to see how they take care of the 
crucial issues of the domain facilitates reflection by everyone on the underlying conceptual and 
notational issues of that domain.  This focus seems much more appropriate than others in the 
twenty-first century, where new machine algorithms will be needed and new technology will 
require many people to learn complex multistep algorithmic processes.  If the focus is 
accompanied by a continual focus on testing and teaching accessible methods as well as on 
fostering invention, all children should be able to learn and explain a multidigit addition and 
subtraction method as well as carry it out accurately. 

Multidigit Multiplication and Division 
 There is much less research on children’s understandings of multidigit multiplication and 
division than on the operations already discussed.  Some sample teaching lessons have been 
published (e.g., Lampert, 1986, 1992).  Teaching alternative methods for accomplishing these 
operations has been explored (e.g., Carroll & Porter, 1998).  A preliminary learning progression 
of multidigit methods has been reported for third- to fifth-grade classrooms in which children’s 
invention of algorithms was fostered (Baek, 1998).  These methods moved from (a) direct 
modeling with objects or drawings (by ones and by tens and ones), to (b) written methods 
involving repeatedly adding (sometimes by repeated doubling, a surprisingly effective method 
used historically), to (c) partitioning methods.  The partitioning methods ranged from 
partitioning with various partitions using numbers other than ten, partitioning one number into 
tens and ones, and partitioning both numbers into tens and ones. 
Current and Accessible Methods 
 The multiplication and division algorithms currently most prevalent are complex embedded 
methods that are not easy to understand or to carry out (see the left-most methods in Figure 4).  
They demand high levels of skill in multiplying a multidigit number by a single-digit number 
within complex embedded formats in which multiplying and adding alternate.  In these 
algorithms, the meaning and scaffolding of substeps have been sacrificed to using a small 
amount of paper.  Both use aligning methods that keep the steps organized by correct place value 
without requiring any understanding of what is actually happening with the ones, tens, and 
hundreds. 
 Modifications of these methods that clarify the meaning and purpose of each step are given 
in Figure 4.  The separation of the steps in each of these accessible methods also facilitates the 
linking of each step to the quantities involved.  An array drawing is used to show the quantities; 
arrays are powerful models of multiplication and division.  The accessible methods and drawings 
demonstrate key features in multidigit multiplication and division that students must come to 
understand and be able to do. 
 

Insert Figure 4 about here; see Figure 4 at the end of this paper. 
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Accessible Multiplication Methods 
 For multiplication, an array-size model is shown first.  Such a model provides initial 
support for the crucial understandings of the effects of multiplying by 1, 10, and 100.  It also 
shows clearly how each of the tens and ones numbers in 46 and 68 are multiplied by each other 
and are then added after all multiplication operations are done.  The sizes of the resulting squares 
or rectangles indicate the sizes of these various products and thus support the key understanding.  
As one looks across each row in the array, one can see in the top row 10 ´ 46 as 10 ´ 40 (4 
squares of 100) plus 10 ´ 6 (6 columns of 10 each).  Multiplying by 60 creates 6 such rows of 10 
products, so multiplying by 60 is multiplying by 10 and then multiplying by 6.  Then one sees 8 
rows of 1 ´ 46 as 1 ´ 40 and 1 ´ 6 (8 rows of each).  The abbreviated model (shown next in 
Figure 4) can be drawn to summarize steps in multidigit multiplication.  Its separation into tens 
and ones facilitates the multiplication operations involved. 
 The accessible multiplication algorithm shown in the top right of Figure 4 is the fullest 
form with all possible supports.  As students come to understand each aspect of multiplication, 
each of the supports can be dropped, resulting in a streamlined version that is a simple expanded 
form of the usual U.S. method.  Variations of the accessible algorithm have been widely used in 
research classrooms and in some innovative textbooks.  Its key feature is a clear record of each 
of the four pairs of numbers (40 ´ 60, 40 ´ 8, 6 ´ 60, 6 ´ 8) that need to be multiplied.  The 
vertical and diagonal marks are a way to record as you go which numbers you have already 
multiplied.  Unlike the current U.S. algorithm, which starts at the right and multiplies units first, 
the accessible algorithm begins at the left, as students prefer to do.  This also has the advantage 
that the first product written is the largest, which permits all of the smaller products to be aligned 
easily under it in their correct places.  Writing out the factors at the side of each product 
emphasizes what one is actually doing in each step and permits an easy check.  Writing out the 
separate products for 40 ´ 60 and 40 ´ 8 is much easier for students than doing the usual 
procedure: multiply 40 ´ 8, write part of the answer down below and part above the problem, 
multiply 40 ´ 60, and then add in the number written above the problem.  The complex 
alternation of multiplying and adding in the usual algorithm is not necessary, is a source of 
errors, and obfuscates what one is actually doing in multidigit multiplying: multiplying each 
combination of units and adding all of them up (see the abbreviated model).  Students who 
understand and wish to drop steps in the accessible algorithm do so readily, with a result looking 
like the usual U.S. method except that it has four instead of two products to be added.  These 
four can even be folded into two for those students who wish to do so.  Therefore the accessible 
model permits students to function at their own level of supported understanding and helps them 
explain what they are doing. 
 The accessible algorithm also generalizes more readily to algebraic polynomial 
multiplication than the current U.S. algorithm does.  The abbreviated drawing can show, for 
example, 2x + 3 across the top and y + 4 along the bottom.  The model, and students’ previous 
experience with multidigit multiplication, then clarify that one just multiplies each kind of unit in 
one number with each kind of unit in the other to find the product 2xy + 8x + 3y + 12. 
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 Multiplying by three-digit numbers is a simple extension of the two-digit version.  After a 
conceptual development of the results of multiplying by 100 (numbers get two places larger so 
they move left two places), abbreviated drawings can demonstrate the nine combinations of 
products that need to be found and added.  The accessible algorithm for these larger numbers is 
easy to carry out because it scaffolds the necessary steps.  Given the accessibility of calculators, 
it is not clear how much valuable school learning time should be devoted to such large 
multiplication problems.  But they could easily be introduced in a conceptual fashion that then 
relates to estimating the product, especially when the largest product is found first, as in the 
accessible method shown in Figure 4. 
Current and Accessible Division Methods 
 The usual U.S. division algorithm has two aspects that create difficulties for students.  
First, it requires students to determine exactly the maximum copies of the divisor that can be 
taken from the dividend.  This feature is a source of anxiety because it is often difficult to 
estimate exactly how many will fit.  Students commonly multiply trial products off to the side 
until they find the exact one.  Second, the current algorithm creates no sense of the size of the 
answers one is writing, and, in fact, one is always multiplying by single digits.  In the example in 
Figure 4, you just write a 6 above the line; there is no sense of 60 because you literally are only 
multiplying 46 by 6.  Thus, it is difficult for students to accumulate experience with estimating 
the correct order of magnitude of answers in division when they are using the current U.S. 
algorithm. 
 The accessible division method shown in Figure 4 facilitates safe underestimating.  It 
builds experience with estimating and later accurate assessment of calculator answers because 
students multiply by the correct number (e.g., 60, not 6).  It is procedurally easy for those still 
gaining mastery of single-digit multiplication because it permits the use of easy known products.  
It can be abbreviated to be as brief as the current algorithm for those who can manage the 
abbreviation.  This accessible division algorithm has been used in various innovative materials 
since at least the 1960s. 
 The example of the accessible method given first in Figure 4 shows a solution that might be 
done by a student very early in division learning.  Conceptually the drawing and the written 
algorithm work together to show the meaning of long division: It is like a puzzle in which you 
take away copies of the divisor (here, 46) until you cannot take away any more copies.  You are 
solving the equation “46 ´ ? = 3129” using the notion of division as the inverse of multiplication.  
The drawing shows these copies being added to make the total 3128 as 46 ´ 68 (remainder of 1), 
and the written algorithm subtracts each large copy as you go to keep track of how many more 
you have still to take away.  The drawing can scaffold the 1-digit by 2-digit multiplication 
necessary at each step: 50 ´ 46 is split into 50 ´ 40 = 2000 and 50 ´ 6 = 300 to make 2300.  The 
scaffolding is important because this combination of multiplying and adding is complex for some 
students.  The example shows the student selecting to multiply by 50 because 5s facts are learned 
easily and accurately (remember the nice repeating pattern for the 5s—the Gs—in the Figure 2 
alphabet multiplication table?).  The student then sees that he or she can take away another 10 
copy of 46, which is simple to do.  The student then cleverly uses a product he or she has already 
found (50 ´ 46) to take away 5 copies of 46.  Doubling is also easy, though many students would 
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probably have multiplied by 3 at that point.  Successive doubling is actually the basis of 
multiplication and division algorithms that were used historically in Europe.  A version of the 
same problem that might be done by that same student after more experience is given at the right 
in Figure 4.  At this point the student may not need the drawing to scaffold the steps, meanings, 
or multiplication operations. 
 Both the accessible algorithms for multiplication and division depend heavily on fluency 
with multiplication and addition (and in division, with multidigit subtraction).  The difficulties 
many students have in subtraction noticeably affect division, so understanding and fluency in 
multidigit subtraction is very important.  Because students typically range very substantially in 
the rate at which they have learned all of their multiplications, a few to many students may not 
have full fluency by the time their class is discussing multidigit multiplication and division.  In 
such cases, it seems advisable to provide such students with a multiplication table that can be 
used to check their multiplications as they go.  This aid will permit them to keep up with the 
class and learn an algorithm.  Furthermore, each verification of or search for a product in the 
table provides another learning trial for basic multiplication.  Of course, providing separate 
learning opportunities for multiplication combinations with which the student is not yet fluent 
would also be helpful. 
How Much Consolidation Time? 
 How much valuable school mathematics time should be spent on multidigit multiplication 
and division is a question whose answer probably will need to be continually revised during the 
twenty-first century.  New goals will arise to compete with these domains, as they have already.  
At present, it does seem worthwhile to spend some time on conceptual and accessible approaches 
that facilitate students’ understanding of how multidigit multiplication and division can be built 
from key concepts of place value and basic multiplication combinations.  During that time 
students could also be bringing to mastery those combinations.  Drilling for long periods on 
problems involving large numbers seems a goal more appropriate to the twentieth than to the 
twenty-first century. 

General Issues in Achieving Computational Fluency 
Curricular Issues 
 The U.S. curriculum has been characterized as “underachieving” and recently characterized 
in the TIMSS international study as “a mile wide and an inch deep” (McKnight, Crosswhite, 
Dossey, Kifer, Swafford, Travers, & Cooney, 1989; McKnight & Schmidt, 1998; Peak, 1996).  
Countries whose students score high in international studies select vital grade level topics and 
devote enough time so that students can gain initial understanding and mastery.  In the United 
States, no teacher and no grade level are responsible for a given topic.  Topics such as multidigit 
computations are distributed over several years, doing one digit larger each year.  Large amounts 
of time are devoted at the beginning of each year and each new topic to teach what was not 
learned or was learned incorrectly in the year before.  It is much easier, however, to help students 
build initial correct computational methods than to correct errors.  For example, second graders 
using base-ten blocks for initial learning of multidigit addition and subtraction explained answers 
and achieved high levels of accuracy that were maintained over time (Fuson, 1986a; Fuson & 
Briars, 1990).  Older students who had been making subtraction errors for years did learn in one 



26 

session with base-ten blocks to correct their errors, but many later regressed to their old errors 
(Resnick & Omanson, 1987).  Carefully designed practice, help during learning, and other 
aspects described above and below are important for computational fluency.  But the most severe 
problem at this point is helping students learn in a timely fashion any correct generalizable 
method that they understand.  Such initial learning must be deep and accurate.  Only with 
understanding can interference from later similar notations and methods be reduced. 
Helpful Instructional Phases 
 What features of classrooms can contribute to computational fluency?  A recent review of 
the literature contrasts the many studies that found an experimental instructional method superior 
to a traditional control method (Dixon et al., 1998).  The less-effective traditional methods 
involved two phases: A teacher presentation of some topic (with students observing passively) 
followed by independent student practice of that topic, with or without teacher monitoring, 
giving feedback, and so forth.  Superior learning was achieved by effective methods that had 
three phases.  First, teachers initially involved students in the introduction of the topic through 
explanations, questions, and discussion; students were active learners whose initial knowledge 
about a domain was elicited.  Second was a long period in which students were helped to move 
from teacher-regulated to self-regulated solution processes.  Teachers structured a significant 
period of help that was gradually phased out.  This help was given in different ways: by 
scaffolded problems and visual or other supports, by peers, and by the teacher or aides.  During 
this sustained helping period, students received feedback on their performance, got corrective 
help so that they did not practice errors, and received (and often gave) explanations.  The third 
phase of effective instruction was a brief assessment of students’ ability to apply knowledge to 
untaught problems (so-called near transfer) in which students worked independently.  Such 
independent work might then be distributed over time.  Other relevant results from studies that 
Dixon et al. reviewed were that strategy instruction of various kinds was superior to not giving 
such instruction, working fewer problems in depth was more effective than working more 
problems quickly, writing as well as solving problems was helpful, and solving concept 
examples sequenced for generalization and discrimination was helpful. 
 The implications for computational fluency of all of these results are that all students had 
sustained supported time to learn a given domain deeply and accurately.  Such deep sustained 
accurate learning over time is necessary for complex domains requiring multistep solution 
methods.  Students need to learn the central principles of a domain (e.g., in multidigit addition 
and subtraction, that you add or subtract like multiunits), learn the overall shape of a given 
method, learn in detail the steps of the method, and weave this developing knowledge together so 
that it operates fluidly and accurately.  This is true whether the students invent the method or 
learn it from other students or from the teacher.  Practice is important, but effective practice is 
supported by monitoring and help that are focused on doing and on understanding.  In contrast, 
drill and practice frequently carries the connotation of rote practice, has little sense of 
monitoring or feedback, and no connotation of helping or of visual, conceptual, psychological, or 
motivational support for learning throughout the practicing phase. 
 At present, not enough is known about effective ways to orchestrate the helping period to 
deliver feedback and help to students as they need it, especially in classrooms where students are 
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using different methods.  Given the heterogeneity of most classrooms, such orchestration is 
difficult.  Designing and testing effective helping methods and effective ways to give feedback 
on answers are a vital area for further research.  It is also important to ascertain how to facilitate 
peer helping, given that peer helping or cooperative learning frequently but not always results in 
better learning.  Some methods used in other school subjects, such as jigsaw methods in which 
each group member is given different knowledge to contribute, have been difficult to use in 
mathematics. 
 A textbook issue that at present interferes with the more effective three-phase method (and 
even with effective teacher presentation of topics in the less-effective two-phase traditional 
approach) is the common misuse of art (photographs, drawings, cartoons, etc.) in U.S., 
mathematics textbooks.  In many other countries, the art is designed to support conceptual 
thinking.  In the United States, art frequently distracts from conceptual understanding because it 
is irrelevant or overwhelmingly busy. 
Helping Diverse Learners 
 A related review of literature concerning school success of diverse learners (Kameenui & 
Carnine, 1998) identified six crucial aspects of teaching and of learning materials: structuring 
around big ideas, teaching conspicuous strategies, priming background knowledge, using 
mediated scaffolding (e.g., peer tutoring, giving feedback about thinking, providing visual 
supports that provide cues for correct methods), using strategic integration (integration into 
complex applications to provide distributed practice in more complex situations), and designing 
judicious review.  Diverse learners are those who may experience difficulties in learning because 
of low-income backgrounds, speaking English as a second language (or not at all), or other 
reasons. 
 The first aspect, structuring around big ideas, is absolutely necessary to obtain sufficient 
time so that students, especially diverse learners, can learn deeply the core concepts of that grade 
level.  It is the antithesis of the present “mile wide and inch deep” U.S. curriculum.  This issue 
must be resolved if diverse learners are to obtain computational fluency.  The next three aspects 
specify aspects of the initial active learning phase and the helping phase in the three-phase 
effective teaching model outlined above. 
 Using strategic integration and designing judicious review are aspects of computational 
fluency that follow deep and effective initial learning in a domain.  Strategic integration of 
various computational methods into moderately complex problems increases problem-solving 
competence by increasing the range of situations in which students use that computational 
method.  It also provides for distributed practice of the method, one of the most effective kinds 
of practice. 
 Judicious review is defined as being plentiful, distributed, cumulative, and appropriately 
varied.  It follows initial deep learning.  Distributed and monitored practice requires working one 
or two examples occasionally, with immediate help for wrong answers.  This practice is 
important even after successful meaningful learning because the nonsupportive or misleading 
mathematical words or notations in many domains continually suggest wrong methods (e.g., 
adding the top and the bottom numbers when adding fractions).  Furthermore, many 
computational domains are similar, and learning new domains creates interference with old 
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domains (e.g., you do multiply the tops and bottoms of fractions).  Therefore, after deep and 
successful initial learning, distributed practice of a couple of problems of a given kind can check 
whether errors are creeping in.  Frequently, helping students correct their methods is as simple as 
suggesting that they remember original supports.  For example, as some errors crept into 
multidigit methods learned with base-ten blocks, asking students to “think about the blocks” was 
sufficient for them to correct their own errors in subtracting with zeroes in the top number 
(Fuson, 1986a). 
 The research of Knapp and associates (Knapp, 1995; Zucker, 1995) on attributes of 
successful high-poverty classrooms underscores these results.  They found that a balance 
between conceptual understanding and skills practice resulted in higher computational and 
problem-solving performance by lower-achieving and higher-achieving students.  Successful 
teachers supported conceptual understanding by focusing students on alternative solution 
methods (not just answers), elicited thinking and discussion about solution methods, used 
multiple representations and real-life situations to facilitate meaning-making, and modeled ways 
to probe meaning of mathematical problems or methods.  These teachers also provided a 
“healthy dose” of skills practice. 
Individual Differences 
 As in other school subjects, substantial social-class and ethnicity differences in 
achievement exist in mathematics (e.g., Ginsburg & Russell, 1981; Secada, 1992).  Kerkman and 
Siegler (1993) found that low-income children had less practice in solving problems and that 
they executed strategies less well.  Strategy instruction and monitored practice were therefore 
recommended for such students.  Individual differences as early as first grade cut across gender 
and income levels to differentiate children into what Siegler (1988) has termed good students, 
not-so-good students, and perfectionists.  Roughly half of the not-so-good students went on to be 
identified as having mathematical disabilities by fourth grade versus none of the other groups.  
On single-digit addition tasks, these students were characterized by use of more primitive 
methods and by more production of errors on problems on which they could have used (but did 
not use) more accurate but effortful strategies (e.g., counting with their fingers).  Thus, these 
students were producing incorrect answers more often, thereby creating responses that competed 
with their experiences of correct answers.  Siegler’s model for the learning of single-digit 
addition emphasizes the importance of avoiding generating errors because these interfere with 
remembering the correct answer.  Thus, the importance of feedback and immediate help is 
underscored.  Perfectionists and good students had similar long-term outcomes, but the 
perfectionists were much more likely to use slower and effortful methods even on simpler 
problems than were the good students.  This finding emphasizes that methods of practice should 
facilitate individuals understanding their own growth and progress rather than lead to the 
comparing of individuals.  Practice should also be varied so that sometimes speed is important 
but, at other times, the use of a method in a complex situation is important.  An overemphasis on 
either could lead to rigidity rather than computational fluency. 
 There has been less work on mathematics disability than on reading disability, especially 
with younger children.  Different kinds of mathematics disability have been identified.  Geary’s 
(1994) review identifies four types and recommends different kinds of learning supports for each 
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kind.  Students with semantic memory disabilities have difficulty with verbal, and especially 
phonetic, memory, but many have normal visuospatial skills.  These students have great 
difficulty memorizing basic computations because these rely on a phonetic code.  Therefore 
instructional supports that use visual rather than phonetic cues and teaching strategies for basic 
calculations are recommended for these students.  Students with procedural deficits use less-
advanced methods than their peers.  Though many eventually catch up, this long period of using 
primitive methods may be detrimental.  Such children do not seem to invent more-advanced 
methods as readily as their peers do.  Therefore, conceptually based strategy instruction that 
helps these children use and understand more-advanced strategies such as counting on can be 
helpful.  Students with visuospatial disabilities have difficulties with concepts that use spatial 
representations, such as place value.  Research is not clear about the developmental prognosis of 
such children, but suggested methods of remediation are to support visual processing with extra 
cues.  Because directionality is a special problem with such students, the accessible methods 
described in this paper that can be carried out in either direction might be especially helpful for 
such students.  Difficulties with mathematical problem solving that go beyond arithmetic deficits 
also characterize some students.  Supports for problem solving such as drawing the problem 
situation that were discussed in an earlier section of this paper are suggested as useful for these 
students.  Technology may also help provide complex problem-solving situations that are 
nevertheless accessible to students with disabilities in mathematics (Goldman, Hasselman, & the 
Cognition and Technology Group at Vanderbilt, in press). 
 Although one might think that students identified as learning disabled in mathematics 
might need special learning situations, the recommendations for all types of disabilities in 
mathematics summarized by Geary (1994, p. 285), one of the most prominent researchers in that 
field, sound like a summary of the results in this chapter.  Thus, the kinds of teaching 
recommended by research for helping students in general to computational fluency may 
especially help those students with mathematical disabilities.  The use of accessible methods also 
may be especially helpful to these students because they tend to be behind and discouraged, and 
accessible methods are learned and understood more quickly and easily. 
Teaching to Prepare Students for Rational Numbers 
 Teaching and learning with whole numbers can lay an adequate foundation for later work 
with rational numbers, including decimal and ordinary fractions.  Or it can make such work more 
difficult.  At the present time, students make many errors in decimal and ordinary fractions 
because they incorrectly generalize concepts from whole numbers (e.g., Hiebert & Wearne, 
1986; Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989).  Approaching all domains 
with a focus on the meanings for the notations, and with explicit consideration of what does and 
what does not generalize, could improve student competence in these advanced domains.  Deep 
understanding of place value and of the regular ten-for-one trades to the left as numbers get 
larger can facilitate understanding decimal fractions as regular one-for-ten trades to the right, as 
quantities get smaller.  Understanding multidigit addition and subtraction as adding or 
subtracting like quantities (ones to ones, tens to tens, etc.) can facilitate the related understanding 
that adding or subtracting decimal fractions or regular fractions must also involve adding or 
subtracting like quantities (for decimal fractions such as tenths to tenths or hundredths to 
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hundredths, and for fractions such as fourths to fourths or thirds to thirds).  Deeply understanding 
quantities for fractions and decimal fractions is necessary in order to overcome meanings 
suggested by whole number notation (e.g., that 0.25 > 0.3 because 25 > 3).  Similarly, it is 
important for students to reassess the whole number notions that “multiplication makes larger” 
and “division makes smaller” when they multiply and divide fractions.  If whole number 
knowing and doing has been a sense-making process intertwined with problem solving and 
explaining one’s thinking, it will be easier for students to make the necessary extensions and 
adjustments to their whole number knowledge as they enter these more advanced domains. 

Conclusion: Achieving Mathematical Power in Whole Number Operations 
 The reform approach as outlined in the first round of the NCTM standards documents 
stimulated much action in the United States and Canada and contributed to a broader view of 
mathematics learning and teaching.  As is inevitable with such documents, however, the 
approach was also sometimes misunderstood and distorted in ways that are counterproductive to 
good mathematics teaching and learning.  The following have sometimes been thought by some 
people to characterize “reform math teaching”: extensive unfocused, meandering discussion; 
mathematical content restricted to children’s current knowledge and interests; real-world 
contexts or activities in which the mathematical content is not clear or is so complex that little 
mathematical learning occurs; teachers who give no information of any kind including standard 
mathematical vocabulary or notation; and prolonged periods of “invention” of solution methods 
in which children struggling with mathematics use very primitive methods rather than building 
prerequisite knowledge for more-advanced methods or being helped to learn such methods. 
 The Principles and Standards for School Mathematics attempts to clarify and correct such 
misunderstanding.  The new document instead recommends, and the research literature supports, 
ambitious mathematical goals, teacher-led and monitored discussion that focuses on central 
mathematical ideas, teachers explaining and clarifying as well as children explaining and 
clarifying, using and building on children’s knowledge but extending that knowledge in 
mathematically important ways, and using carefully chosen real-world contexts as well as 
carefully designed pedagogical learning supports (e.g., selected manipulatives or drawings) to 
facilitate meaning-building by all children.  Teachers have vital roles both in helping children 
build initial understanding and in supporting them to achieve computational fluency and 
mathematical power.  There is considerably less research on such productive teacher roles than 
on student understanding, errors, and methods (but see, e.g., Hiebert et al., 1997; Fraivillig, 
Murphy, & Fuson, 1999; Fuson & Burghardt, in press; Simon, 1995; Stipek, Salmon, Givvin, 
Kazemi, Saxe, & MacGyvers, 1998).  As this body of research grows, teachers will have more 
detailed guides to developing mathematical power in all of their students. 
 Meanwhile, the research that does exist provides substantial direction for improving the 
students’ mathematical power.  All students require a constant intertwining of understanding and 
doing, of building meaning, problem solving, and computing.  Learning “the basic facts” is 
important.  But research indicates that, in addition and subtraction, children around the world 
progress from simple methods with objects through a progression of more rapid methods.  
Children can be helped to progress through these methods to powerful and rapid general 
methods.  Multiplication and division involve different patterns for different numbers, and 
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students also progress through a learning path of more rapid methods.  Many different algorithms 
(general methods) exist for solving multidigit addition, subtraction, multiplication, and division.  
Research and analysis have identified some that are both easy to understand and to carry out.  
These all relate to the methods commonly taught now in the United States and Canada, but are 
conceptually more powerful or easier to carry out.  Students in the United States and Canada can 
learn to understand and explain computational methods if these methods are approached as 
sense-making endeavors.  Practice is important, as is learning prerequisite knowledge that 
facilitates more advanced methods.  Problem solving can be used from the beginning to provide 
meaning for computations and then can be continually intertwined as both methods and problem 
solving become consolidated. 
 The new research-based view of achieving computational fluency is a more complex and 
connected view than is the past linear view of count, memorize facts, solve problems, learn 
algorithms, and then solve problems with them.  However, a new, more complex view is 
necessary to achieve the new, more complex goals of mathematics learning and teaching 
necessary for the twenty-first century.  A new kind of computational fluency is needed for the 
challenges and changes Americans and Canadians will face during the coming 100 years. 
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Table 1:  Types of Addition and Subtraction Situations Given as Word Problems:  Change Add To/Take From, Put 
Together/Separate, and Compare 
 

Change Add To and Change Take From 

Change-Add-To unknown result  Change-Add-To unknown change  Change-Add-To unknown start 

Miguel had 4 dollars. Giovanni 
paid Miguel 3 dollars for a milk 
carton. How many dollars does 
Miguel have now? 
 

 Eliany had 5 packets of ten candies 
and 7 loose ones and went to the 
store and bought some more candy. 
Now she has 8 packets of ten 
candies and 6 loose ones. How 
much candy did Eliany buy? 
 

 Pablo had some pencils and bought 
9 more. Now Pablo has 16 pencils. 
How many pencils did Pablo have 
to start with? 
 

Change-Take-From unknown 
result 

 Change-Take-From unknown 
change 

 Change-Take-From unknown start 

Doridalia had 32 dollars. She went 
to the store and paid 13 dollars for 
some crayons.  How many dollars 
does Doridalia have now? 
 
 

 Aunt Pat had 11 ears of corn. 
Then the children ate some of them. 
Now Aunt Pat has 6 ears of corn. 
How many ears of corn did the 
children eat? 

 Mitzi went to Roberto’s store and 
bought 2 packets of ten peanuts 
and 8 loose ones from him. Now 
Roberto has 4 packets of ten 
peanuts and 7 loose ones. How 
many peanuts were there in 
Roberto’s store before Mitzi 
bought her peanuts? 
 

Put Together and Take Apart 

Put Together unknown total  Put Together  unknown part  Put Together  unknown part 

Mario bought 3 packets of ten 
colored pencils and 5 loose ones. 
Edwin bought 2 packets of ten 
colored pencils and 9 loose ones.  
How many pencils did they buy 
altogether? 
 

 Ed has 15 kittens and puppies. 
7 of them are puppies. 
How many of them are kittens? 

 Isabel has a flower shop. In her 
shop there are 13 roses and some 
carnations. Altogether there are 37 
flowers in Isabel’s shop. How 
many carnations does Isabel have 
in her shop? 

Take Apart unknown total  Take Apart unknown part  Take Apart unknown part 

Dad picked some flowers.  He put 
7 in the red vase and 9 in the blue 
vase. How many flowers did he 
pick? 

 Rachna picked 42 apples at the tree 
farm.  She put them in a bag for her 
grandmother and a bag for her 
mother. There were 28 in the bag 
for her mother.  How many were in 
the bag for her grandmother? 

 Farmer Brown’s sheep walk back 
and forth between two fields.  He 
counted 6 sheep in one field.  He 
has 14 sheep.  How many sheep 
should be in the other field? 

Compare More and Compare Less/Fewer 

Compare unknown difference  Compare consistent (with more) 
Compare inconsistent (with less) 

 Compare inconsistent 

Tom has 8 stamps. 
Sue has 13 stamps. 
How many more stamps does Sue 
have than Tom? 
 
How many fewer stamps does Tom 
have than Sue? 

 My friend and I went to the store to 
buy notebooks. My friend paid 
$.64 more than I did. If I paid 
$1.68, how much did my friend 
pay? 
 
I paid $.64 less than my friend. 

 Rodrigo has 16 books. Rodrigo has 
7 more books than Aki has. How 
many books does Aki have? 
 
 
Aki has 7 fewer books than 
Rodrigo. 
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Note:  Compare situations have an additive or subtractive character depening on the language in the comparing 
sentence.  “More” suuggests addition, while “less” suggests subtraction.  These suggestions are even stronger in 
languages such as Spanish, where the same words are used for “more” and “add” and for “less/fewer” and 
“subtract.”  The difficult compare problems have insonsistent language:  the word in the question suggests the 
operation opposite to that required to solve the problem.  The comparing sentence can always be said in two ways, 
one uusing “more” and one using “fewer/less” (these are underlined above.  Thuus one can change a difficult 
inconsistent problem into a simpler consistent problem by changing the question.  Other language can be used to 
make the comparison:  “How many books does Aki have to get to have as many as Rodrigo?” or “If Rodrigo and 
Aki match their books, how many extra will there be?” 
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Figure 2:  A Multiplication Table for Numbers A Through CL 

 

 C  D  E  F  G  H  I  J  K  C L  

C  C  D  E  F  G  H  I  J  K  C L  

D  D  F  H  J  C L  C D  C F  C H  C J  D L  

E  E  H  K  C D  C G  C J  D C  D F  D I  E L  

F  F  J  C D  C H  D L  D F  D J  E D  E H  F L  

G  G  C L  C G  D L  D G  E L  E G  F L  F G  G L  

H  H  C D  F J  D F  E L  E H  F D  F J  G F  H L  

I  I  C F  D C  D J  E G  F D  F K  G H  H E  I L  

J  J  C H  D F  E D  F L  F J  G H  H F  I D  J L  

K  K  C J  D I  E H  F G  G F  H E  I D  J C  K L  

C L  C L  D L  E L  F L  G L  H L  I L  J L  K L  C L L  
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Figure 3.  Multidigit Addition and Subtraction 

Typical U.S. 
Algorithms 

Accessible Generalizable Methods Drawings to Show Quantities 

 
 

Method A: New Groups Below 
 

 

Method B: See 
Place Values 

 

 
move right to left 
add ones, carry 1 to 
above left; add tens, 
carry 1 to above left  

usually add carry 
to top number, 
remember that 
number while 
adding it to 
bottom number 

move right to left 
1 new group goes below in answer 
space, keeping total together 

add 2 numbers you see, then 
increase that number by 1 to 
add the new group  

can be done in 
either direction 
add each kind of 
unit first, then add 
those totals 

Stage 1:  Sustained linking of quantities to written 
algorithm to build understanding of quantity 
meanings 
Stage 2:  Only do numerical algorithm but 
occasionally explain using quantity words 
(thousands, hundreds, tens) 
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             1 
1 

1444 

+ 
568 
876 

1300 
130 

14 
1444 

+ 
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move right to left 
alternate 
ungrouping and 
subtracting 

Ungroup Everything First (As Necessary) 
  Then Subtract Everywhere 
  
 
 
  
 left-to-right right-to-left 
 ungrouping ungrouping 
 
 

 

Do all 
ungrouping, in 
any order, until 
every top 
number is 
larger than the 
bottom 
number.  Then 
subtract each 
kind of 
multiunit, in any 
order. 

1 4 4 4  
5 6 8  
8 7 6  

3 3 1
4 

1
3 

1
3 

1 4 4 4  
5 6 8  
8 7 6  

1
3 

3 1
4 

1
3 

1 4 4 4  
5 6 8  
8 7 6  

1
3 

1
4 

1
4 

1
3 
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