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WHEN “TBE SAME” IS THE SAME AS DIFFERENT DIFFERENCES:
ALIYA RECONCILES HER PERCEPTUAL JUDGMENT OF
PROPORTIONAL EQUIVALENCE WITH HER
ADDITIVE COMPUTATION SKILLS
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Norlhwestern University
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The paper iniroduces the “‘eye trick'. an optical illusion, and argues for its viability
as adidactic means 10 mediate between young siudents' naturalistic percepiual judg

menits and mathematical descriptions o f proportional equivalence dasses (€ g.,2:3=4:
6=6:9=8:12—...e1c.).

Cognitive psychology (Suzuki & Cavanagh, 1998), biological (Thinus-Blanc.,
|988), and developmental (Piaget & inhelder. 1946} siudies all suggest a human
capacity to pcrforin perceptual judgments of piopoitional equivalence, e.g, beiween
two geometrically similar rectangles. Such performance appears to rely on what
Cobb and Steffe (1998, p 55: see also Gelman, 1993) call “concepis in action, enae-
tive concepts, rather than [on] abstract concepts embodying a structural relationship
between.. quantiues'’, as evidenced in swudents’ nototiously low achievement in
numertcal proportion problems (e g . Kaput & Wesit. 1994). By embracing students’
domain appropriate ‘enactive’ knowiedge. we hope 10 create “insiuction [that] is in
harinony with [fearners'] schemes” (Cobb & Sieffe, 1998, p. 48), and may thus pré
empt “discontinuities between the child's procedures and the child’s concepts™ (p 58;
see also Vygotsky, 1978; and Freudenthal, 1981, on mathematiaation) Specifically in

the domain of ratio and proportion, the “eye-trick”, a perceptual illusion (see below),
may afford students an opportunily for “fogico-malhematical swucturaion thal. .. goes

beyond perception’ (Piaget & [nhelder, 1969, p. 49, my italics).

‘The motiyation of this work is our belief that ratio and proportionis an advantageous
conceplua eniry to rational numbers {(e.g., see Confrey, 1998) hecause ratios do not
require embedded numbers, as fraclions do Fractions are parts ¢tof-whole, and thus
present the percepiual-logical challenge of ‘inclusion’ (e ., Singer & Resnick, 1992).
The simpler visual physical instantiations of whole-to-whole ralios in geometricaily
similar shapes suggest asimpler approach. This work was done as part of our larger
project 10 utilize the multiplication table as a source tor teaching/learning rate, ratio,
andproportion as coming from iterated addition (see also Abrahamson, 2002, Cobb &
Steffe, 1998; see Abrahamson & Cigan, 2002, for an outiine of our curricular unit).

Method

The eye-irick involves two proportionate piclures (e.g.. of heights 2cm&3cm and
4cmébem, Figure 1a). Children are asked to shut onc eye to eliminaie their stereo-
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Card A
Figure la Cards A and B as seen laid flat Figure I'b. Cards A and B as seen
on the table. through the eye-trick illusion.

scopic vision. Holding both pictures, they then move the larger picture away from the
smaller picture (farther from their eye) until they find a point where the two pictures
produce images of the same size (Figure 1b). This proportion is then examined numer-
ically by attending to the embedded ruler in each image (243 units in both pictures),
and through measurement, using a stretchable rubber ruler. The unstretched units of
this ruler correspond to 2 and 3 units of height in Card A and to 4 and 6 units of height
in Card B, but the stretched units of the ruler correspond to 2 & 3 units in Card B. The
entire set of materials included a total of five cards per ratio set (e.g., 2:3, 4:6, 6:9, 8:
12, 10:15) as well as additional sets of cards (a 3:4 set and a 3:5 set) bearing different
images of object pairs.

We have employed the eye-trick tasks both in whole-class design studies (Abraha-
mson & Fuson, in preparation), and in clinical interviews, of which Aliya's (8.5-year-
old) interview was typical. I worked with and video-taped Aliva over three |-hour
periods spanning 15 days.

Results

Aliya (a) saw that two cards of different size appeared “the same™; (b) measured
these cards with the stretchable ruler and tabulated these data (2&3, 4&6, in Figure
2a); (¢) claimed these data were mathematically nonsensical since 3-2=| but 6-4=2
(the differences are different); (d) sought an alternative numenical pattern to explain
what she saw, wondering aloud whether the differences of 1 and 2 units, respectively,
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could possibly signify a trend of 1, 2, 3, etc., which would predict a difference of 3 in
an additional card; (e) explored and venified her hypothesis by using a card in which
the relevant dimensions were 6cm:9cm (6 & 9, Figure 2a); (f) compared these data to
a case of head-start equal-rate growth (Figure 2b, Bob and Joe were born exactly one
year apart); (g) discussed the viability of each table as a mathematical descriptor of
some real-world class of situations; (h) practiced using her hands to simulate and dif-
ferentiate equal-rate and different-rate growths: starting from holding her hands 2 and
3 “units" above the table, respectively, she raised her hands whilst either maintaining
a fixed difference between them or by gradually increasing the difference; (i) re-inter-
preted the proportion table as modeling “unit-splitting™, e.g., 3 "becomes” 6 because
each l-unit became 2 smaller units but the visible total remained the same size (Fig.
3, compare to 2* 3 as 3+3 where the total visibly doubles in size); (j) came to accept
proportional equivalence as the numerical phenomenon corresponding to the stretch/
shrink or “change unit™ classes of real-world situations,

Ratio Change Head-Start
Danny Snowman Equal Rate
2 3 Bob Joe
4 f 2
6 9 4
6
Figure 2a. Tabulated
measurements. Figure 2b. Sibling ages.
Conclusions

The eye-trick provides a powerful sensory
support for understanding proportional equiva-
lence. This visual support was successful in over-
riding the well-documented “additive frame”, by
which 2:3 cannot equal 4:6 because 3 is 1 more
than 2 but 6 is 2 more than 4. It enabled Aliya to
build an additive-multiplicative frame for propor-
tion situations, initially as additive increasing-dif-
ference situations (within the ratio-table rows),
and then as a multiplicative interpretation of unit
splitting within both the eye-trick pictures and the
ratio table (between its rows).

Figure 3. Explaining pro-
portional equivalence as
coming from unit-splitting
interpreted muluplicatuvely.
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