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Researchers from 4 projects with a problem-solving approach to teaching and learning multidigit
number concepts and operations describe (a) a common framework of conceptual structures
children construct for multidigit numbers and (b) categories of methods children devise for mul-
tidigit addition and subtraction. For each of the quantitative conceptual structures for 2-digit num-
bers, a somewhat different triad of relations is established between the number words, written 2-
digit marks, and quantities. The conceptions are unitary, decade and ones, sequence-tens and ones,
separate-tens and ones, and integrated sequence-separate conceptions. Conceptual supports used
within each of the 4 projects are described and linked to multidigit addition and subtraction meth-
ods used by project children. Typical errors that may arise with each method are identified. We
identify as crucial across all projects sustained opportunities for children to (a) construct triad con-
ceptual structures that relate ten-structured quantities to number words and written 2-digit numer-
als and (b) use these triads in solving multidigit addition and subtraction situations.

Traditional mathematics schooling in the United States and many other countries
fosters memorization of multidigit calculation procedures, inadequate under-
standing of the base-ten place-value system of written multidigit numbers, and con-
sequent long-term errors in multidigit calculation procedures (Bednarz & Janvier,
1982; Beishuizen, 1993; Fuson, 1990, 1992a, 1992b; Kouba et al., 1988; Murray
& Olivier, 1989; Olivier, Murray, & Human, 1990). A number of research projects
around the world have begun to address these deficiencies by trying new approaches
that are hypothesized to support children’s construction of accurate and robust con-
ceptual structures for multidigit numbers and facilitate the use of these conceptual
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structures in multidigit calculation. For 3 years participants in four of these projects
have met on a semiannual basis to discuss approaches, progress, children’s think-
ing, evaluation methods, teacher education, and other pertinent aspects of the
projects. These discussions have worked toward mutual understanding of the the-
oretical and pragmatic contexts of the projects and the coconstruction of overarching
views of children’s thinking about mathematics.

In this article we report progress in one area of these discussions: children’s con-
ceptions of multidigit numbers and their uses of these conceptions in multidigit addi-
tion and subtraction situations. Progress in other areas is reported in Hiebert et al.
(1996, 1997). We describe here a common framework of conceptual structures chil-
dren construct for multidigit numbers and categories of methods children devise for
multidigit addition and subtraction. The developmental sequences of children’s con-
ceptual structures proposed here extend and clarify the theoretical analyses in Fuson
(1990), integrate the theoretical perspectives of the four projects (Carpenter,
Fennema, & Franke, 1996; Fennema et al., 1996; Fuson, Fraivillig, & Burghardt,
1992; Fuson, Smith, & Lo Cicero, in press; Hiebert & Wearne, 1992, 1993, 1996;
Murray & Olivier, 1989), and depend substantially on the descriptions of children’s
thinking as manifested in all four projects. The relationship between our construction
of both the framework and the categories was an interactive one over the years. We
began with the early separate frameworks, tried to understand children’s methods
within them, modified and integrated them as our understanding of children’s meth-
ods grew, and constantly revised our categories of children’s methods.

The projects designed to help children learn number concepts and operations with
understanding are (a) Cognitively Guided Instruction (CGI), directed by Thomas
Carpenter, Elizabeth Fennema, and Megan Franke at the University of Wisconsin;
(b) the Conceptually Based Instruction project (CBI), directed by James Hiebert and
Diana Wearne at the University of Delaware; (c) the Problem Centered Mathematics
Project (PCMP), directed by Piet Human, Hanlie Murray, and Alwyn Olivier at the
University of Stellenbosch in South Africa; and (d) the Supporting Ten-Structured
Thinking projects (STST), directed by Karen Fuson at Northwestern University.

All four programs take a problem-solving approach to teaching multidigit num-
ber concepts and operations. The learning of multidigit concepts and procedures is
perceived as a conceptual problem-solving activity rather than as the transmission
of established rules and procedures. Teachers do not expect all children to use the
same procedure and do not teach only a single expected algorithm. A great deal of
lesson time is devoted to allowing children to work out their own procedures and
then to share and discuss strategies for solving addition and subtraction problems
and tasks involving place-value meanings of numbers (and, for some projects, mul-
tiplication and division problems). The intent is to convey to students the impor-
tance of working out a strategy for solving the problem and then sharing and reflect-
ing on alternative strategies.

In all four projects, the teacher plays an active role in the classroom by posing the
problems, coordinating the discussion of strategies, and joining the students in
asking questions about strategies. The intent is to create an environment in which
teachers support students’ efforts to construct their own solution methods. In traditional
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instruction, teachers often do more than serve as a resource and guide. They usu-
ally teach a standard procedure and may intervene in ways not adapted to children’s
thinking. In these ways, teachers can easily undercut the goal of children devising
and using multidigit methods they truly understand. Some teachers in some projects
did occasionally introduce an alternative strategy, but this was considered by the
teacher and by the students as just another way one might approach the problem.
Teachers in all four projects worked to communicate their expectations that students
can figure out methods for dealing with multidigit numbers, that multiple methods
exist, and that students do not have to appeal to the authority of the teacher to ascer-
tain the correctness or acceptability of a given procedure.

As more classrooms around the world move toward reform teaching and learn-
ing, children will use a wider range of addition and subtraction methods. Our hope
is that by sharing our methods, we can accelerate understanding and appreciation
of the range of methods children can use. Most methods have advantages and dis-
advantages. Knowledge of these may enable teachers to decide more intelligently
which methods they wish to support in their classrooms.

In this article, we briefly describe aspects of our theoretical perspective and then
summarize the conceptual supports used in the project classrooms. Next, the con-
ceptual structures children construct for multidigit numbers are described. Finally,
multidigit addition and subtraction methods used by children in the various projects
are described and discussed. 

THEORETICAL VIEW

Children construct meanings for multidigit numbers through the various encounters
they have with these numbers both in and out of school. Elementary school mathematics
classrooms encourage or facilitate the development of various conceptions of multi-
digit numbers through the language that is used by the teachers and students, the type
of physical materials that are used, the problems that are to be solved, and the struc-
tured class activities. These components act in concert with one another to support chil-
dren’s construction of meanings for multidigit numbers. 

We want to clarify our theoretical perspective on the use of such conceptual sup-
ports in the classroom, including objects organized or organizable into tens.
Dialogue within the research community in the last several years has sometimes been
dichotomized as (radical) constructivist vs. non(radical) constructivist, with the lat-
ter described as the representational view of mind (e.g., the title of Cobb, Yackel,
& Wood, 1992). In this dialogue the use of objects is sometimes identified with the
representational view. We believe that this is a false dichotomy that greatly over-
simplifies the issues involved. 

What is crucial in the use of objects is the theory of learning with which the objects
are used (the terms used in the following are taken from a longer discussion in Fuson,
Fraivillig, & Burghardt, 1992). Objects sometimes are used with an “instamatic cam-
era” view of learning that assumes that a child needs one or very few “exposures”
to a given object and that the child will then almost automatically interiorize and use
these objects in mathematical thinking. Children in our projects do indeed sometimes
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seem to interiorize classroom ten-structured object supports and use them in their
problem solving. Children may explicitly refer to “seeing in their minds” base-ten
blocks or unifix cubes or a counting frame or Montessori cards and may use these
mental images to carry out a multidigit addition or subtraction or at least to direct
or constrain such methods. But we also have strong evidence against the rapid and
direct interiorization implied by an “instamatic camera” view of learning. Our expe-
rience instead supports a “meaning maker” view of learning in which what a
child “sees” when looking at objects depends on the conceptual structures used by
that child. A given child can be supported toward constructing conceptual structures
not yet built by having particular kinds of objects available, by kinds of use and dis-
cussion of such use by other children and adults in a classroom, and by activities
that help or direct the child in certain ways. But the construction of new concep-
tual multidigit structures is a prolonged process that occurs within classroom
social and activity structures that include many elements other than the objects (see
Hiebert et al., in press). 

Two issues are central to the current debate. One is whether children do or do not
have a mental interpreter of what they see and hear in the world. Consensus is grad-
ually growing that all children do indeed have such interpreters; in this paper we call
these “conceptual structures.” For us, a conceptual structure in use indicates/reflects
the aspects of the mathematical situation considered by the user at that moment: it cap-
tures what aspects are focused on and how these aspects are interpreted.

A second issue in the debate is the rate at which new conceptual structures are
constructed by a child. Our collective experience is that such constructions ordi-
narily take a rather long time for many children to construct, at least in the domain
of multidigit numbers and for children speaking European languages. Thus, con-
struction of conceptual structures is more like concept learning of many types and
less like insight, which is characterized by a rapid reorganization of conceptual struc-
tures. This is not to say that we have never seen moments of insight. They do occur
and are striking and exciting to witness and share. Even insights, however, involve
restructurings of concepts children already have. 

PROJECT CONCEPTUAL SUPPORTS

In Cognitively Guided Instruction (CGI) classes (Carpenter et al., 1996; Carpenter
et al., in press; Fennema et al., 1996), methods for operating on multidigit numbers
develop as natural extensions of the methods that children use to solve problems
involving single units. Word problems provide the basis for almost all instruction.
In the early grades, teachers begin by giving children a variety of word problems
that can be solved by modeling and counting using single counters. Teachers do not
demonstrate the solution to problems, but a great deal of time is spent discussing
alternative strategies for solving each problem. The strategies discussed serve as
models for other children, and the discussions provide an opportunity for children
to reflect on their own solutions.

Initially, children solve problems involving multidigit numbers by modeling the
problems with single-unit counters. These solutions do not require any real conceptions
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of place value beyond the ability to count. Children learn place-value concepts as
they explore the use of base-ten blocks and other base-ten materials to solve word
problems and listen to other children explain their solutions with the blocks.
Initially the ten-blocks simply serve as convenient collections of unit counters that
do not get mixed up. With teacher encouragement, some children come to recog-
nize that they do not have to count all the individual units in the tens block each time
they construct a set and begin to construct two-digit quantities by making collec-
tions of tens and ones. Place-value concepts emerge over time as children become
increasingly flexible and efficient in the use of base-ten materials. As their use of
the materials becomes more automatic, they come to depend less on the manipu-
lations of the physical materials themselves. Over time they are able to abstract their
solutions with physical materials so that they can add and subtract multidigit
numbers without them.

Throughout the year different children in a CGI class operate at many different
levels with respect to place-value knowledge. One important consequence is that
there is no prevalent strategy that all children use at a particular point in time. Children
have the latitude to use a strategy that makes sense to them at the time. A conse-
quence of the variety of strategies in use at any given time is that children have the
opportunity to learn more advanced strategies by interacting with other students who
are using them. Thus, although children are not asked to relate specific components
of different representations to one another, they continuously shift among representations
both in their own solutions of different problems and in their discussions with class-
mates of different strategies for the same problems.

In the Conceptually Based Instruction Project (CBI), the timing and sequencing
of place value and multidigit addition and subtraction were matched to that in the
textbook to permit a control comparison. As in texts in the United States, activities
related to place value were followed several weeks later by activities involving com-
bining multidigit numbers. Students began by grouping objects into sets of ten to
facilitate counting and then were encouraged to connect their representation with
the recorded written symbol (5 groups of ten and 3 units is written 53). The activ-
ities were expanded to larger numbers using base-ten blocks. Students were given
word problem situations involving packaging in tens to assist them in constructing
meaning for the written symbol. Students developed methods for multidigit addi-
tion and subtraction using base-ten blocks and their understanding of the meaning
of written numbers. Problems were presented in various contexts, and students shared
and discussed their solution strategies.

In the Problem Centered Mathematics Project (PCMP), classroom activities pri-
marily support children’s construction of robust counting abilities including count-
ing by tens. Base-ten blocks are not used because many teachers in the past used them
to teach a standard algorithm, and a vital component of the PCMP is to stimulate chil-
dren’s own alternative solution methods. First graders spend much time in count-
ing activities: estimating and then counting piles of loose counters, counting large
sets of objects into groups (especially groups of ten), counting on a ten-frame of 10
or 12 rows of ten horizontal movable beads (first by moving individual beads and
then by moving whole rows of ten while counting by tens), counting on a number
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chart with rows of ten numbers, skip-counting real objects in twos, fours, fives, tens,
and twenties, and measuring activities with body parts and tape measures. Children
use Montessori cards to show numbers (putting a 6 card on top of the 0 in the 40
card to show 46 as 40 and 6); some classes later use Montessori cards for multidigit
addition and subtraction. Teachers are encouraged to go as far as possible every day
in counting activities, aiming to reach the three-digit numbers as soon as possible.
They frequently count over tens and over hundreds to facilitate these more diffi-
cult counts. A wide range of word problems are given from the beginning (includ-
ing multiplication and division and a range of addition and subtraction problem types).
The size of numbers is adjusted to children’s conceptual structures by the teacher
working serially with different groups of students and by using small numbers for
difficult problems. Simple addition and subtraction word problems for students not
yet counting on have numbers such as the following: 18 + 5, 27 + 4, 32 – 3, 28 +
___ = 32 to encourage such counting on. Students counting on but only consider-
ing numbers as collections of single objects with no subgroupings have all two-digit
numbers in their problems so that they can construct more advanced conceptions
while constructing addition and subtraction methods. Children solve word problems
on slates in small groups, showing their work in the arrow format we use later in
Tables 1 and 2. They then discuss their solutions in their small groups.

There were multiple Supporting Ten-Structured Thinking (STST) projects that
moved from supporting children’s understanding of a single accessible and generalizable
strategy to supporting children’s construction of all of the multiunit conceptual struc-
tures and their invention of multiple strategies. In addition to standard English or
Spanish number words for two-digit numbers, tens and ones words (e.g., “five tens
and three ones” or “five groups of ten and three loose ones” for 53) were used in
the later projects; these paralleled the written marks and explicitly name the tens
as do Asian number words. 

In the early projects children moved directly from single-digit addition and
subtraction to using base-ten blocks to construct four-digit addition and subtraction
methods. Strong connections were made among the quantities presented by the blocks,
number words, and written numerals during multidigit addition and subtraction. The
blocks were used in most classrooms in a dialogue between teacher and children
in which the features of the blocks were used to direct and constrain the written mul-
tidigit addition or subtraction methods. These Target Algorithm Studies indicated
that our linked conceptually supported instruction resulted in considerably higher
levels of correct multidigit addition and subtraction and of explanations of computational
procedures using multiunit quantities and one/ten trades conceptions than much of
traditional school instruction (Fuson, 1986; Fuson & Briars, 1990). 

In the second STST project, the Children’s Invented Procedures Study, six
groups of four or five high-achieving second graders worked together to use base-
ten blocks and written marks to add pairs of four-digit numbers presented horizontally
(Burghardt, 1992, 1993; Burghardt & Fuson, 1996; Fuson & Burghardt, 1993a, 1993b;
Fuson, Fraivillig, & Burghardt, 1992). However, children often worked in two sep-
arate contexts (blocks and written marks) and did not use the objects to help them
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with their written numeral procedures. In this separate numeral context, children
invented many different incorrect numeral procedures. When the experimenters forced
the children to link the blocks and the written numerals, the children could and did
correct their numeral errors. Therefore, it is clear that teachers who are using multi-
unit objects to support children’s construction of multiunit conceptual structures may
have to support the linking of the multiunit objects and any written mathematical
methods that are to be facilitated by the multiunit objects. Emphasizing and sup-
porting this linking can provide a powerful context for children’s construction of
the desired network of conceptual structures and for the invention of accurate and
understood multidigit methods.

The most recent STST project, Children’s Math Worlds, focuses on Latino chil-
dren’s constructions of arithmetical understandings in urban classrooms (Fuson, 1996;
Fuson, Smith, & Lo Cicero, in press; Fuson, Zecker, Lo Cicero, & Ron, 1995). Conceptual
supports vary somewhat across classrooms. All classrooms use tens and ones words
as well as standard English or Spanish number words. In all classrooms children add
and subtract two-digit numbers by making ten-stick and unit drawings. Units are dots,
circles, or short horizontal lines. Children build up meanings for the ten-sticks by a
succession of activities in which they (a) make columns of ten units to record a large
number of objects, (b) join the units by a vertical line to make the ten units into one
ten, and c) draw only a vertical stick to show one ten (rather then ten connected units).
These drawings are used in real-world problem contexts like a doughnut store,
where a unit is a doughnut or a penny, the vertical line is a box of doughnuts or 10
cents (or a dime), and a square is a baking tray of 100 doughnuts (or a tray of ten boxes)
or 100 cents (or one dollar). Children talk about boxing or unboxing doughnuts (or
other entities of their own designation) or exchanging money if they use a trading process
in addition or subtraction. Children also arrange large sets of objects into groups of
tens and ones and count by tens as well as count the tens. Conceptual supports used
by some but not all classes are two-sided money that show money equivalents (e.g.,
a strip of ten pennies with one dime on the back), centimeter ten-lengths or square
decimeter grids to measure length and area, large classroom thermometers and
small versions, vertical line segments (“trees”) on which children write addition or
unknown addend counting-on solutions, decade and ones cards that show quantities
of tens and of ones in which the ones are put on top of the decades as are Montessori
cards, and discussion of single-digit addition and subtraction finger methods that use
ten. Children work on object and on mental methods.

CHILDREN’S CONCEPTIONS OF MULTIDIGIT NUMBERS

Background

Our work builds on and extends the conceptual structures children construct for
four-digit numbers identified by Fuson (1990) in her review of the literature on chil-
dren’s functioning on place-value tasks and multidigit addition and subtraction. These
conceptual structures involve two aspects of the written number marks (the visual
layout and the increase in value according to relative positional value from the right),
two aspects of spoken number words (the number names and the decreasing value
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as the names are spoken), and six increasingly general and abstract quantity multi-
unit structures that give meanings to the written marks and spoken words. 

A major focus of Fuson’s analysis is the learning difficulties caused by the sev-
eral irregularities in English in the words for two-digit numbers. These contrast with
the regularity of the named-value structure of the hundreds, thousands, and larger
places in which the number of multiunits is stated and then the multiunit value word
is said (e.g., “five thousand eight hundred”). These larger number words relate fairly
simply to their written place-value numbers; the value words disappear and are sig-
nified by relative position from the right (e.g., in 5800, thousands are in the fourth
position and hundreds in the third). In contrast, for two-digit numbers, children must
learn a special decade list (ten, twenty, thirty, forty, fifty, etc.) whose cardinal rela-
tionship to the first nine number words is masked by pronunciation differences for
several decades (two, twen; three, thir; five, fif). The teens pose special problems
with their irregular “eleven” and “twelve” that show little sense of their original mean-
ings as “(one) left ten” and “two left ten” (one and two left over ten: Menninger,
1958/69) and the pronunciation irregularities for thirteen and fifteen (not threeteen
and fiveteen). Furthermore, the order of the words and of the marks is reversed: We
say “fourteen” with the four first, but write the four second (14). Finally, the suf-
fixes “-ty” and “-teen” do not clearly suggest ten, so these quantity meanings are
not clear from English number words. Most European languages have such irreg-
ularities that mask ten-structured meanings. 

Some children come to conceptualize multidigit addition and subtraction as adding
or subtracting quantities grouped into multiunits of ones, tens, hundreds, thousands,
and so on. Two different such multiunit conceptualizations were identified by Fuson
in the earlier literature. Children may add or subtract multiunits within the count-
ing word sequence (i.e., use sequence methods such as counting on by tens and ones),
or they may add or subtract the multiunits directly (i.e., use collected multiunit meth-
ods, e. g., count or add the hundreds, then count or add the tens, then count or add
the ones). Children also may conceptualize such problems as involving concate-
nated single digits and operate as if they were adding and subtracting separate columns
of single digits. This conception of multidigit numbers is error prone because it does
not direct or constrain the methods children use sufficiently, and it leads to many
different errors (see Burghardt & Fuson, 1996, for a recent report of many such errors
using this conception and VanLehn, 1986, for an earlier summary). A given child
may have all three of these conceptions and use them in different situations; the con-
catenated single-digit conception is used especially with vertical numeral problems. 

When children move rapidly in their learning from single-digit numbers to four-
digit numbers, the irregularities for two-digit numbers have less impact because the
regularities of the hundreds and thousands enable children to construct general
multiunit concepts that can regularize the tens somewhat. For example, some chil-
dren in the PCMP experiencing difficulties with two-digit numbers perform with more
understanding after exposure to three-digit numbers. PCMP teachers are therefore encour-
aged to move to three-digit numbers as rapidly as possible. In the more usual prac-
tice of spending quite a long time on two-digit numbers and two-digit addition and
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subtraction, the decade structure of two-digit numbers in most European lan-
guages is very salient, and children construct various decade conceptions of two-
digit numbers. This paper focuses on such two-digit conceptions, though three-digit
addition and subtraction methods are also discussed. Therefore this paper does not
use the more generalized aspects of Fuson’s (1990) treatment (the pattern of
increases/decreases in value of positions and number words and the last four
quantity multiunit structures). 

Our Developmental Sequence of Conceptual Structures 

Through our work with children in the various projects, we have identified five
different correct conceptions of two-digit numbers that children use (see Figure 1).
We call this the UDSSI Model after the names of these five conceptual structures
(unitary, decade, sequence, separate, integrated). Several different conceptions may
be available to a given child and be used in different situations. Thus, new conceptions
are added to rather than replacing old conceptions. A sixth conception, the incor-
rect concatenated single-digit conception discussed above, is also included in
Figure 1. This conception may exist alongside any of the correct conceptions and
be used in certain situations (especially those in which numbers are written verti-
cally) until another conception becomes more likely to be used in such situations.

Each of our conceptions involves a triad of two-way relationships between
number words, written number marks, and quantities. Each of these is connected
to the other two. These triads are shown in Figure 1 as triangles with a solid two-
way arrow representing each pair of unidirectional relations that must be established.
This triad structure is shown in the bottom right-hand corner for single-digit num-
bers, where the structure begins. Multidigit numbers build on and use the unitary
single-digit triads of knowledge for single-digit numbers. Thus, before children can
learn about two-digit numbers, they must have learned for one to nine how to read
and say the number word corresponding to each number mark, write the numeral
corresponding to each number word, and count or count out quantities for each mark
and number word one to nine. Because the number words for single-digit numbers
in most languages and the corresponding written marks are arbitrary, most children
learn most of the unitary single-digit triads as rote associations. The six relation-
ships in the triad come in at different times for a given number, and a given rela-
tion will be learned later for some numbers than for others (e.g., children will be
able to make a quantity of nine later than a quantity of three). Children usually learn
many number words before they learn many number marks. Therefore the quan-
tity–number mark relationships will often involve counting the quantities, and they
will be generated as a two-step process using the bottom mark to number-word rela-
tionship and then the number-word to quantity relationship. The direct link between 
quantity and number mark can only occur by associating patterns of entities
directly with a numeral; counting necessarily involves the number words. As the
numbers get larger, counting obviously is used more frequently because it is more
difficult to see or use patterns of quantities.



Figure 1. A developmental sequence of children’s two-digit conceptual structures: The UDSSI
Triad Model
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Figure 1—continued. A developmental sequence of children’s two-digit conceptual structures

Unitary multidigit conception. The unitary multidigit conception is a simple exten-
sion from the unitary single-digit conception. In the unitary multidigit conception
the triad relationships relate a whole word to a whole quantity to a whole mark (e.g.,
Bergeron & Herscovics, 1990; C. Kamii, 1985; M. Kamii, 1981, 1982; Sinclair, Garin,
& Tieche-Christinat, 1992). Quantities are not differentiated into groupings, and
the number word and number marks are not differentiated into parts. So for 15 dough-
nuts, for example, the 1 is not related to “teen” in “fifteen,” and the quantities are
not meaningfully separable into 10 doughnuts and 5 doughnuts.

Decade and ones conception. The decade and ones conception is built by chil-
dren using English number words or languages with a similar decade structure. Many
English-speaking children begin to recognize the decade structure in number
words by age 41/2 (Fuson, Richards, & Briars, 1982). They count using this struc-
ture, but they may not for as much as 11/2 years learn the order of the particular decade
words. Instead, they cycle after twenty-nine through repeated and seemingly ran-
dom decade counts (e.g., twenty-nine, fifty, fifty-one,…, fifty-nine, thirty, thirty-
one,…, thirty-nine, seventy, seventy-one,…, seventy-nine, sixty,…, etc.). As chil-
dren begin having experiences counting large numbers of objects and perhaps especially
seeing written number marks for the decades (20, 30, 40, etc.), they may begin to
separate the decade and the ones parts of a number word and start to relate each part
separately to the quantity to which it refers: “fifty” to fifty objects and “three” to
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three objects. They may make the same separation and try to link the decade and
the ones parts of a number word to written marks. All of these separated links are
shown by the dashed arrows connecting these parts. So for 53 doughnuts, for exam-
ple, fifty is understood to be the 5 written first and three to be the 3 written second.

This decade conception often leads in the beginning to a particular error of writ-
ing number marks in which the features of the number words are extended to the
marks (Bell & Burns, 1981; Fuson & Drueck, 1994; Power & Dal Martello, 1990;
Seron, 1994; Seron, Deloche, & Noel, 1992). Because the number words are con-
catenated (the ones word follows the decade word), the child also concatenates the
numerals: writes fifty (50) followed by three (3), yielding 503. Children eventually
do learn that the 0 is not written and the 3 is written immediately following the 5.
This may be learned rotely or as a response to realizing that 503 is wrong (503 is
five hundred three, not fifty-three). Or it may be learned through conceptual sup-
ports in the classroom, such as Montessori cards in which a 3 card is placed on top
of a 50 card to make a 53 (the South African PCMP project), or the 0 in 50 is made
with faint dots and the 3 is written on the faint 0 to show the fifty “hiding” in the
53 (STST Latino project).

Sequence-tens and ones conception. Children who have experiences learning to
count by ten within the number-word sequence and learning to group objects into
tens and count these groups by tens (e.g., “ten, twenty, thirty, forty, fifty”) may con-
struct a ten-structured version of the decade-and-ones conception, a sequence-tens
and ones conception, in which each decade is structured into groups of ten (see Fuson,
1990, for early literature concerning this conception). This conception requires the
skill of being able to count by tens, but it also requires “seeing” the groups of ten
within a quantity and choosing to count these by tens. Analogous to the count-to-
cardinal shift children make when counting by single-digit numbers, children
must shift from the sequence-tens referent of the last counted group of ten (“fifty”
said while pointing to the last, fifth box of ten doughnuts) to its decade meaning as
all the doughnuts counted so far (“fifty” doughnuts so far).

Separate-tens and ones conception. In a quantity situation with grouped tens, a
child focusing on and counting the groups rather than the objects in the groups (e.g.,
counting the boxes of ten doughnuts) is using a separate-tens and ones conception.
This meaning is not supported by European number words, because their irregu-
larities do not explicitly and clearly name the ten (see Fuson & Kwon, 1992; Menninger,
1958/69). In contrast, Asian number words based on ancient Chinese use the
same pattern English uses for hundreds and thousands: 53 is said “five ten three.”
When the first digit is 1, a slight irregularity occurs: the one is not said, so 12 is said
“ten two.” These number words facilitate easy links between each part of a num-
ber word and each part of the written mark: a child need only drop the ten when writ-
ing the mark and insert the ten when reading a mark. These number words clearly
suggest the quantitative meaning of the number words and marks as referring to sep-
arate-tens and single units. Children making a multidigit quantity using a separate-
tens and ones view count the groups of ten using single-digit numbers (one ten, two
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tens, three tens, four tens, five tens) or omit the word tens while counting, leaving
it as understood (one, two, three, four, five tens). Some Chinese mothers help chil-
dren as young as 5 years of age form this triad of conceptions by grouping quantities
to show the multiunits of ten and the units and then relating the words to these multi-
units of ten and individual units (Ana Lo Cicero, personal communication, February,
1994; Yang & Cobb, 1993). For children speaking number words based on Chinese,
building this separate-tens and ones triad is relatively simple. Children speaking European
languages may need more support to see and focus on the groups of ten as tens, rather
than as just collections of units to be sequence counted. However, children do not need
to learn any special counting list to use a separate-tens conception.

Integrated sequence-separate tens conception. Children who have the opportu-
nity to construct both a sequence-tens and a separate-tens conception of two-digit
numbers may go on to relate these two conceptions so that they are able to shift back
and forth between them rapidly. In this integrated-tens conception, bidirectional rela-
tions are established between the tens and the ones component of each of the three
parts (numbers words, marks, quantities) of the sequence-tens and the separate-tens
conceptions (see Figure 1). With the integrated-tens conception, a child is able to
answer immediately that fifty has five tens because these two multiunit tens com-
ponents are related. Before such a conception is constructed, a child with the
sequence-tens conception has to count by tens to fifty and keep track of how
many ten counts there are to find five tens in fifty. A child with the separate-tens
conception has to count five tens to find out that they make fifty. This integrated-
tens conception allows children considerable flexibility in approaching and solv-
ing problems using two-digit numbers because they can rapidly shift attributes of
the ten-structured situations to the background or foreground, for example, fifty dough-
nuts, the five open boxes of ten doughnuts (five groups of ten ones), and the five
closed boxes (five tens). 

Concatenated single-digit conception. Even when children have one of the adequate
multidigit conceptions and use this conception to add or subtract numbers meaning-
fully and accurately when these are presented in a word problem or horizontally, they
may use a concatenated single-digit conception for the same computation presented
vertically and make an error (Cobb & Wheatley, 1988; Davis, 1984; Murray, unpub-
lished data). The vertical presentation elicits an orientation of vertical slots on the mul-
tidigit numbers that partitions these numbers into single digits. The physical appear-
ance of the written multidigit marks as single digits and the nonintuitive use of
relative left-right position as a signifier may combine to seduce children to use a con-
catenated single-digit conceptual structure even if they have a more meaningful con-
ception available. For this reason the CSD conceptual structure was also labeled as the
constantly seductive digits conception (Fuson & Burghardt, 1993a).

Relative Difficulty of the Learning Task for European Children

The learning task for a child speaking a European language is quite daunting. The
European number words require some decade conception, and the written marks require
some conception of separate tens and ones. For full understanding of the words and
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marks, children need to construct all five of the UDSSI multidigit conceptions.
Children speaking Chinese-based number words that are regular and name the tens
have a much easier task. They need only construct the unitary and the separate-tens
conception, and the relationships in the separate-tens conception are easy to con-
struct because their number words regularly name the tens. They also have an eas-
ier time learning the counting sequence to 100 than do children speaking English
or Italian because of the regularity of the Chinese-based number words (Miller, 1990;
Miller, Agnoli, & Zhu, 1989; Miller & Stigler, 1987). Therefore, children speak-
ing European languages need considerable quantitative support and a long time to
construct all of these conceptions.

In the four projects reported here, children were supported in various ways to con-
struct a sequence-tens or separate-tens or both conceptions before or while they were
inventing conceptual methods to add and subtract multidigit numbers. Addition and
subtraction frequently provided learning activities in which more advanced mul-
tidigit conceptions could be constructed.

Complexity of children’s construction of triads. Figure 1 is deceptively neat in sev-
eral ways. First, as discussed earlier, children usually learn the six relationships for
a given number at different times (e.g., a child may be able to read 12 before being
able to write it). Second, children may start to learn triads for different numbers at quite
different times. Third, children may not construct the last triad relationships for all
numbers to 99 for one kind of conception before the first triad relationships for another
conception are constructed. Thus, for a given child, one should think of stacks of pos-
sible triads for each conception for numbers from 10 to 99, and within each stack (and
even within a triad) some of the relationships are automatic, some are newly built, and
some may not yet exist.

Children’s use of the conceptions may also be more complex than indicated in
Figure 1. Children who have more than one multidigit conception may use differ-
ent conceptions in different situations or combine parts of different triads in a sin-
gle situation (e.g., count 53 objects unitarily but use a decade conception to write
how many as 503). Furthermore, not all children construct all conceptions; these
constructions depend on the conceptual supports experienced by individual chil-
dren in their classroom and outside of school. Therefore, children’s multiunit
conceptions definitely do not conform to a stage model, except that the earliest rela-
tionships in each conception do follow the paths in Figure 1.

Triads for Three-Digit and Four-Digit Numbers

European languages vary somewhat in the regularity of the words for the third and
fourth digits, the next two multiunits. English is regular for the multiunits of hundred
and thousand: the number of multiunits of hundred or thousand is ordinarily followed
by the word hundred or thousand (e.g., 7500 is said as “seven thousand five hundred”).
Therefore children do not need to construct special “hunade” or “thousade” concep-
tual structures based on special series of such words; they need only construct a sep-
arate-hundreds and separate-thousands conceptual structure. The relationships in
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these triads are explicit in English, just as the two-digit triad is explicit in Asian lan-
guages. Some European languages such as Spanish do have some irregularities, but
they do not have full special lists for hundreds and thousands. These irregularities
may make it more difficult for children to see the regular patterns in these triads.
For example, Spanish uses “quinientos” instead of “cincocientos,” “setecientos” instead
of “sietecientos,” and “novecientos” instead of “nuevecientos.”

English also has some irregularities for four-digit numbers. These are sometimes
read as two 2-digit numbers (e.g., 2648 might be read as “twenty-six, forty-
eight”). Dates are always read this way, and street addresses are frequently said this
way. For example, 1918 is said as “nineteen eighteen” as a date and as an address.
Such a partitioning may be useful for memorizing addresses or other noncardinal
number uses, but it carries the irregularities for two-digit numbers into four-digit
numbers. Dates also may contribute to confusion concerning the order of subtrac-
tion because time intervals are written using the subtraction symbol as 1850–1965
(a possibility pointed out to us by a reviewer of this article). But to find the difference
in these dates, one must count/add up or reverse the numbers to subtract. Four-digit
amounts are also partitioned this way for money in the United States: $19.18 is read
“nineteen dollars and eighteen cents.” Finally, we also sometimes do not say
“thousand” but instead say a two-digit number and then the word hundred, for exam-
ple, 7500 as “seventy-five hundred.”

In a later section we discuss some addition and subtraction methods for three-digit
numbers. The conceptual structures for three-digit numbers are extensions of the con-
ceptual structures in Figure 1 except that the hundreds have more separate than sequence
characteristics because of their regular named structure (e.g., three hundred).

CHILDREN’S METHODS OF MULTIDIGIT
ADDITION AND SUBTRACTION

Children’s multidigit addition and subtraction methods are generalizations of,
and for more advanced methods, depend upon and use methods for adding and
subtracting single-digit numbers. For this reason we first provide a brief overview
of these methods.

Children’s Single-Digit Addition and Subtraction Methods

With experience, children’s single-digit addition and subtraction methods
become more complex, abstract, interiorized, embedded, and abbreviated. Several
developmental levels in these methods have been identified, and this progression
of methods can be described at varying levels of specificity. We use only the three
levels described by Fuson (1992b) in a recent review of the literature (see Fuson,
1988, 1992a, for more details). These three developmental levels vary in the con-
ceptual units children use to make quantities, in the conceptual operation children
use to gather separate entities into the cardinal sets that present specific quantities
in a given situation, in the cardinal conceptual structures children use to relate the
three quantities in an addition or subtraction situation, and in the solution actions
children carry out to find the unknown quantity. 
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At Level I, children must construct addition or subtraction situations using
physical objects of some kind. These objects are used to model directly the addi-
tion or subtraction operation given in the situation. At a given moment each object
can only be part of an addend or part of the total, though the role can change over
time (an object can first be part of an addend and can later be considered as part of
the total or vice versa). Children count all the objects to add, and they take away
and count the remaining objects to subtract.

At Level 2, a child can simultaneously consider all three quantities in an addition
or subtraction situation by embedding the addends within the total and considering
objects as being simultaneously part of the addend and part of the total. Children can
now count words in the number-word sequence instead of only counting objects, and
they can abbreviate the count of the first addend. Thus, to add, they can count on from
one addend word while keeping track of the other addend words counted on, or they
can add on by adding objects for one addend onto those for the other addend while
counting on. To subtract, they may count back from the total, keeping track of the
addend counted back; count back from the total to an addend; or count up from the
known addend to the total, keeping track of how many are counted up.

At Level 3 the addends no longer have to be embedded within the total but exist
outside in a numerical triplet structure in which the two addends are seen as equiv-
alent to the total. Quantities are composed of ideal chunkable unit items that can be
combined and separated in flexible ways. A given numerical triplet can be recomposed
into a related triplet. In this way children can transform a given triplet with one unknown
member into a triplet of known facts. These “derived fact” solutions commonly use
doubles (a + a) in the United States. For example, 7 + 6 = 6 + 6 + 1 = 12 + 1 = 13.
In Asian countries children learn to recompose numbers into ten-structured triplets
(Fuson, Stigler, & Bartsch, 1986; Fuson & Kwon, 1992a). For example, 7 + 6 = 7 +
3 (to make ten) + 3 = ten three (13). For subtraction one can “take from ten” (13 – 7
is ten three – 7: take 7 from the ten is 3 plus the 3 in ten three is 6) or go down over
ten (ten three – 7 is 3 down to ten and 4 more from the 7 goes down to 6). Such ten-
structured methods are particularly useful in multidigit addition and subtraction, where
each next larger multiunit is related by ten. Thus, ten-structured methods enable chil-
dren to (a) recompose ten or more of one multiunit into one next larger multiunit
and the leftover of that multiunit or (b) recompose a larger multiunit into ten of the
next smaller multiunit in order to subtract. These methods are used much less fre-
quently in the United States, though some children do use them, especially for an
addend of 9 (e.g., Steinberg, 1984, 1985).

Children eventually memorize many single-digit addition combinations. Because
new facts are memorized during each of the three levels (e.g., 2 + 2 is learned very
early), using a known fact is not really a special conceptual level. Rather, use of known
facts occurs at all three levels. Children gradually learn more and more number com-
binations as known facts.

Children’s Two-Digit Addition and Subtraction Methods

Unitary methods. Children at Level 1 who can count above 10 can use a unitary
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multidigit conception to add two 2-digit numbers by making objects for each
number and counting all of the objects. They can subtract by making objects, tak-
ing away from those objects, and counting the remaining objects. Children at
Level 2 can count on by ones, add on objects by ones, or verbally count all by ones
to add. To subtract, they can count back or count up to by ones. However, keep-
ing track of the number counted on, up, or back may be difficult because it will be
so large. These methods are constrained only by how high a child can count and keep
track accurately. 

Kinds of methods using tens. Children in our project classrooms with sequence-
tens or separate-tens conceptions used many different methods for adding and sub-
tracting two-digit numbers. Some of these methods were carried out with objects
(e.g., base-ten blocks or unifix cubes showing individual units and multiunits of tens,
counting frames with rows of ten beads, drawings showing units and multiunits of
ten), some were done verbally (out loud, subvocally, or with inner speech), and some
were done with written numerals on paper to record object or mental verbal meth-
ods (fingers might also be used with these written numeral methods).

We have classified the methods children used into four kinds: methods that begin
with one number and move up or down the sequence by tens and by ones, decom-
pose-tens-and-ones methods in which the tens and the ones are added or subtracted
separately from each other, mixed methods in which the tens are added or subtracted
and then a sequence number is made with the original ones and a sequence method
is used to add or subtract the other ones, and methods in which both numbers are
changed to make easier numbers. The begin-with-one-number and mixed methods
were typically done with a sequence-ten or integrated-tens conceptions, and the sep-
arate-tens and change-both-number methods used a sequence-tens, separate-tens,
or integrated-tens conception.

These two-digit methods have versions that correspond to the single-digit meth-
ods, though of course they all involve using multiunits of tens as well as individ-
ual units. All but the change-both-numbers methods may be done by Level 1
methods counting all or taking away. We have not shown these methods to save space
and because they are readily replaced by counting on/up/down methods, which we
do show. We also show methods involving addition and subtraction. These are more
complex methods involving chunking both numbers in various ways.

In Table 1 we exemplify methods used by children across the various projects.
Methods are shown by counting words or with an arrow recording method used in
the South African classrooms. This notation is used to record sequential problem-
solving actions, which cannot be shown easily by use of equations without violating
usual conventions. The result of an operation is written immediately after an
arrow, and then the number that is added or subtracted next is written. Thus, each
number after an arrow shifts from being a result of the previous operation to
being the start of the next operation. We have written independent operations hor-
izontally; children may write these lines under each other.
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We have found that children’s invented methods almost always begin at the left
with the largest multiunits. Adding the larger multiunits first has also been reported
by others (e.g., Kamii, 1989; Labinowicz, 1985), though most invented methods
reported before our projects began are only for two-digit calculation. 

The strategies for addition and subtraction require at least implicit knowledge of
properties of operations (commutativity, associativity). These are not discussed explic-
itly because we have no direct data concerning our children’s understanding of these
properties. It seems likely that much of our children’s use of such properties is best
characterized as theorems-in-action (Vergnaud, 1988). It is possible for such use
to be focused on in discussions of such strategies. This may be especially helpful
for subtraction situations, where incorrect generalizations from addition strategies
may lead to errors.

Issues concerning subtraction. For subtraction problems, both backward take-
away and forward unknown-addend methods are given. We have included the lat-
ter for several reasons. First, these are rarely taught, so their use by children
almost always is a meaningful one generated by the conceptual structures of that
child. Therefore, problems that elicit them (such as word problems with an
unknown change number) can be useful diagnostic tools for understanding children’s
thinking. Second, all four projects used various real-world situations for compu-
tational problems, so both unknown-addend situations and take-away situations, and
methods modeling these, arose in the classrooms. Third, having some experience
with both kinds of methods may enable chidren to relate multidigit addition and mul-
tidigit subtraction as inverse operations that undo each other. Establishing this inverse
relationship can permit more flexibility in problem solving. Finally, forward
unknown-addend strategies are considerably easier than take-away counting-down
strategies because counting down is so much more difficult than counting up. Teachers
in the PCMP Project who used unknown-addend word problems reported that many
children construct unknown-addend solution methods and then adopt such a
method as a general subtraction method for numeral problems and that such meth-
ods are especially safe methods for weaker pupils. This is similar to the result for
single-digit numbers reported by Fuson (1986) and Fuson and Willis (1988):
Children encouraged to interpret written subtraction items such as 14 – 8 with how-
many-more meanings as well as take-away meanings learned to count up for such
problems, and their subtraction became as accurate and rapid as their addition. Most
children who learn only a take-away interpretation of subtraction have a long lag
between single-digit addition and single-digit subtraction competence with such numeral
problems. This difference may be exacerbated for multidigit numbers under traditional
and even some alternative classrooms approaches. For example, C. Kamii (1989)
reported that multidigit subtraction was much more difficult than multidigit addi-
tion for her children, and she recommended delaying it by a year until third grade.
Her children were using take-away interpretations of subtraction. 

The unknown-addend method always is related to its counterpart addition
method. For sequence methods, counting on or adding on for addition sounds just
like counting up or adding up for an unknown addend. The difference is that, for
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addition, known multiunits are being added on to get an unknown total and the keep-
ing-track process controls when the addition stops (it stops when the second
addend has been added). In unknown-addend subtraction, multiunits are being added
until a given known total is reached; the keeping-track method for the second addend
then provides the answer: how many need to be added to reach the desired total. For
the separate tens and ones methods, unknown addend methods can be written as addi-
tion with the second addend missing. When finished, they would look like the addi-
tion methods. To save space, we did not write them all again in Table 1.

Multidigit subtraction seems to be more difficult for children than multidigit addi-
tion. Some difficulties at this point seem to be inherent, and some may result from
particular aspects of classroom activities, such as an emphasis on a take-away mean-
ing. Children also may incorrectly generalize attributes of addition methods to sub-
traction; this may be exacerbated if addition is experienced for a long time before
subtraction. How many of these difficulties could be reduced by changes in class-
room activities is an important issue for future research. 

One inherent source of difficulty in subtraction is the lack of commutativity of sub-
traction and the appearance of multidigit numerals as constantly seductive single dig-
its, especially in vertical form. This combination results in many children (and even
adults, occasionally) subtracting the smaller from the larger number in a given col-
umn either consistently or occasionally. In multidigit addition, children also permute
the order of adding digits in various positions, but addition is commutative so the answer
is not wrong. Thus, use of a correct addition strategy does not ensure that the child
is even considering the order of the addends; subtraction does test this. 

Subtraction posed some difficulties for most classes of strategies our project chil-
dren invented. The subtraction begin-with-one-number methods initially require count-
ing down, which is difficult and also has certain typical errors (e.g., 43, 42, 41, 40,
30, 39, 38, Fuson, Richards, & Briars, 1982). The mixed method requires a com-
bination of addition and subtraction, which poses difficulties for some children. Methods
in which a ten is opened up to make ten ones may need initial support, either in orig-
inally thinking to get more ones or in ways to record such a method in numerals.

The particular difficulties of each method are discussed more specifically below.
What seems to be common across all of the subtraction methods is the difficulty
of organizing subgoals into a coherent process without getting lost within partic-
ular subgoals. All of the methods (except unitary take away) require addition
notions, if only for the composition of the initial or final quantities as decades and
ones or tens and ones. Some methods require actual addition, as when the new ten
ones are added to the old ones. Negotiating these shifts between addition and sub-
traction without losing the sense of the whole task, especially in take-away situa-
tions, may be initially difficult and require support.

Begin-with-one-number methods. The first method (count on/down/up by tens then
by ones) in Table 1 is simple conceptually, but it requires that a child be able to count
on/down/up from an arbitrary number (e.g., 38, 48, 58) and not just count by tens (30,
40, 50). The former is quite a bit more difficult for children (see the review of this lit-
erature in Fuson, 1990). The count on/down/up of ones also frequently goes over a
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decade word, which can be especially difficult for subtraction. The third sequence
method requires only the simpler kind of counts by ten beginning with a decade,
but one must shift between counting on by ones, to counting on by tens, and back
to counting on the rest of the ones. This is easy to do when objects or drawings or
numbers are used to keep track of the counting or adding/subtracting.

The overshoot-and-come-back methods can be done mentally because the problem
is changed to require only easy decade addition or subtraction. The reverse of this method
is also used occasionally: increase the first number to make an easy addition/subtraction,
add/subtract, and decrease the answer to compensate (38 becomes 40 in this sequence:
38 + 26 is 40 + 26 – 2 or 66 – 2 or 64. Likewise, 64 becomes 66 in 64 – 26, so the prob-
lem becomes 66 – 26 = 40; then 2 is subtracted to get 64 – 26 = 40 – 2 =38).

Mixed methods. The mixed methods begin by separating both numbers, adding or
subtracting the tens, and then moving into the sequence by adding the original ones,
and then adding or subtracting the other ones. The mixed subtraction method is prone
to errors arising from (a) overgeneralizing the addition method in which you add both
ones or (b) not clearly differentiating it from the methods that begin with one num-
ber (in which you subtract the tens and subtract the ones). The step of making the sequence
number by adding in the original ones comes in the middle of the method, so it is espe-
cially confusing. Some children forget to add in these original ones, or they subtract
the ones rather than add them (because “in adding you added everything, so in sub-
traction you subtract everything”). In the PCMP project, the latter error was found
to be increased considerably if teachers gave only addition problems before they gave
any subtraction problems, even for as short a period as 2 weeks. For the add-on-up-
to mixed methods, children also may forget to add in the orginal ones.

Change-both-numbers methods. The change-both-numbers methods can be eas-
ily confused if children do not understand what must remain the same in each method.
In addition the total must stay the same; this method can be thought of as just mov-
ing some entities from one number to the other to make one number easy to add. In
subtraction, the difference must be maintained, so the same number must be added
to (or subtracted from) each number. However, children sometimes subtract the sec-
ond number, as in addition. We have also shown a subtraction method that is fre-
quently brought from home by children whose parents were educated in Latin
America or Europe. This method appeared frequently in the Latino classrooms (Ron,
in press). But most parents had not been taught it in a meaningful manner, so they
did not realize why it worked (that it was adding a ten to the ones in the top num-
ber and a ten to the tens in the bottom number). Some adults learn it without writ-
ing any extra numbers. Knowing about this method can be helpful to a teacher who
otherwise will not understand what a child is doing when she or he increases the bot-
tom tens by one.

Decompose-tens-and-ones-methods. The methods in which the tens and ones are
decomposed and then operated on separately must deal explicitly with regrouping:
in adding, a unit of ten must be made from ten ones, and in subtracting, a unit of
ten must be opened to make ten ones. In the begin-with-one-number methods, this
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could be dealt with implicitly by counting up or down (or adding or subtracting)
over a ten. With the decompose methods, the regrouping step can be done after both
the tens and the ones additions (or subtractions) are done, before both, or alternating
with the additions (or subtractions). The tens can be added (or subtracted) first and
then the ones, or vice versa. The total (or difference) for the ones or for the tens can
be written down as it is found, or it can be remembered and written all at once. Most
of the methods in Table 1 can be done with the numbers written horizontally or by
using the arrow notation, but vertical writing makes it easy to see the like units that
are being added or subtracted. The methods can be done using sequence-ten con-
ceptions in which the tens are thought of as groups of ten and counted on by tens
or added as decades (e.g., 30 + 20), using separate-tens conceptions (e.g., 3 tens +
2 tens is 5 tens), or using integrated-tens conceptions. Children in the projects often
wrote these methods horizontally or did some steps in some methods mentally, with-
out recording them.

Unknown addend methods of subtraction can be done in addition format with the
second addend to be filled in by adding up steps or in a subtraction format in
which the single-digit subtraction done for the ones or the tens is thought of as count-
ing or adding up to. The solved problems will look like those given in Table 1 for
addition and subtraction, so unknown addend methods are not given separately in
Table 1.

Children may need initial support to think of regrouping. In addition, this can usu-
ally be stimulated by pointing out how failure to so do leads to an answer that can-
not be correct (e.g., 38 + 26 = 514) or by asking, “You have too many ones. What
could you do with some of them without changing the number?” In subtraction, chil-
dren may need to be asked, “You need some more ones. Where can you get some
without changing that number?” With such support, these methods can become accu-
rate and well understood.

All of the subtraction regrouping methods involve recomposing the total (a ten
is opened to be available for the subtraction of some or all of the ones). The addi-
tion methods in which the regrouping is done below the total line also involve recom-
posing the total; these show the inverse relationship between addition and subtraction
quite nicely (e.g., the last addition method in the top row in Table 1 is just the inverse
of the first subtraction method in the second row). The traditional addition algorithm
for the United States (third method in the third row in Table 1) instead adds the ten
back into the problem by writing it above the top tens digit. This is understandably
confusing to some children (Burghardt & Fuson, 1996) because it seems to be chang-
ing the problem. Methods in which the regrouped ten is written down in the total
to be added later (e.g., the first method in the second row) are conceptually clearer.

The addition methods that add everything first and then regroup are quite
straightforward and clear conceptually. The subtraction methods require some sense
of negative numbers because one is subtracting rather than “fixing” the ones to get
more, and they require a firm sense of the directionality of the subtraction. Both of
these are a problem for many children, though some children do invent or readily
understand this method (e.g., Davis, 1984; Kamii, 1989). The common error is to
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switch the order of the ones subtraction because it “doesn’t make sense” the other
way or because the order of subtraction is considered unimportant and find 4 – 8
or 8 – 4 to equal 4, so 30 + 4 = 34 is given as the answer instead of 30 + –4 = 26.

The methods in which regrouping is done first make a lot of sense in subtract-
ing because you need more ones from which to subtract. In adding, the parallel meth-
ods require one to look ahead and decide whether the total of the ones will be over
ten and if so, to add another ten. The fourth method shown in the second row is a
common addition method in Europe in which you add from left to right, looking
ahead (to the right) after each addition to see if you need to add another of that unit
to your total. This method, and the methods in which you record any regrouping
in the total, also have easier additions than the traditional U.S. algorithm because
you add the two numbers shown and then increase the total by one mentally. When
the one is written above a column, it is often added to the top number, and then one
must add two numbers, one of which is not visible but must be remembered.

Two-digit problems with sums over 100. The numerical example in Table 1 has
a sum of the tens that is less than 100. Problems with the sum of the tens over 100
are more difficult. English-speaking children in the United States experience con-
siderable difficulty counting by tens over one hundred, with many children in tra-
ditional third-grade classes still not doing so accurately (Labinowicz, 1985). The
begin-with-one-number tens methods require counting over 100, so children need
opportunities to learn such counting associated with quantities. Counting down over
100 may be even more difficult. The decompose-tens-and-ones methods require adding
or subtracting tens over 100, which also must be learned.

Addition and Subtraction of Three-Digit Numbers

The strategies for two-digit addition and subtraction are extended to those for three-
digit addition and subtraction in Table 2. Unknown addend methods are not
included because of space constraints, but they can be identified by reading the addi-
tion problems as if they were 478 + ? = 834. The numbers in Table 2 do not require
adding over 1000. Such problems are more difficult because one must be able to
count up or down by hundreds over 1000 or add or subtract hundreds over 1000,
both of which require additional learning.

The begin-with-one-number sequence methods are straightforward but very
cumbersome to do by counting on or down or up if one carries along the whole sequence
value as one counts. These also involve difficult counts up or down over hundreds.
Sequence adding or subtracting and writing partial sums or differences is fairly easy
as long as one can add or subtract over a ten or a hundred. The method of subtracting
by adding up to make a hundred is particularly rapid and easy: 478 + 22 is 500 and
334 more to make 834; 334 and 22 is 356.

The methods involving adding or subtracting hundreds, tens, and ones separately and
regrouping when necessary are simple extensions of the two-digit methods. These meth-
ods are easier if written in vertical form because this aligns like multiunits (but, of course,
this also can facilitate thinking of the numbers as concatenated single digits). The meth-
ods that do not alternate between addition or subtraction and regrouping are simpler than 
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those that do alternate, because children do not have to switch back and forth between
different kinds of steps. The adding methods with regrouping last and the subtracting
methods with regrouping first are clear inverses of each other. The subtracting meth-
ods that involve doing all subtracting first require negative numbers and a good under-
standing of the units in each place. 

Addition or Subtraction of Four-Digit and Larger Numbers

Because our number system has consistent ten-for-one relationships between
adjacent multiunit quantities or multiunit names or positions, the decompose meth-
ods that add or subtract like multiunits and recompose (regroup) to make a larger multi-
unit (or open a multiunit to make ten of the next smaller multiunit) are particularly
easy to generalize to numbers of four digits and more. Recomposing any multiunit
sum over nine as one of the next larger multiunit and the rest of those multiunits (or
opening a multiunit to make ten of the next smaller multiunit) can be accomplished
within a tens-and-ones conception of each place as single-digit numbers or by think-
ing of the multiunit values. The former is the rapid automatized way to calculate with
large numbers. As long as a child can think of the multiunit values if necessary, using
the simplified adjacent tens-and-ones conception is a sensible approach for adding
and subtracting very large numbers.

Children who have educational experiences supporting such a general “recompose”
strategy may go through two levels of thinking. First, in a study of U.S. children using
base-ten blocks (Fuson & Briars, 1990), and in a study of Korean children’s multi-
digit competence (Fuson & Kwon, 1992b), some first and second graders were
found to use a separate-tens meaning for the sums of all positions. For example, they
described a trade from a hundreds sum of 12 hundreds to the thousands as trading the
10 from the 12. Older children integrated this view with the multiunit values involved
and described this trade as 10 hundreds from the 12 hundreds giving one thousand
that needed to go with the thousands in the next left column.

Currently there is relatively little research on the extension of most of the meth-
ods in Table 2 to four-digit and larger numbers because the projects have followed
only second or third graders in any depth. Some children in all projects did pose and
solve larger problems, but systematic data on these methods are not yet available.
Children in the CBI project who worked with numbers of four digits and more gen-
erally abandoned left-to-right methods and moved from the right to the left. The sequence
counting methods that begin with one number would seem to get quite burdensome
with large numbers if done verbally without recording, because one would have to
carry along a whole multidigit number. The separate multiunits methods general-
ize easily to larger numbers.

Experiences in some of our projects suggest that it is important for students even-
tually to record their verbal methods. Some fourth- and fifth-grade PCMP students
who were top achievers in the first few grades suddenly seemed to come unstuck
and experience to difficulty in these higher grades. They had never been encour-
aged to record their methods and could cope very well mentally. However, in fourth
or fifth grade, the problems moved beyond their mental arithmetic ability, but they
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had not acquired the necessary recording skills. Recording also seemed to help some
CGI students to use accurate methods for larger numbers.

Methods Used by Children in Each Project

Within each project, the conceptual structures constructed by children varied, and
many children varied in their solution methods across different problems and prob-
lem settings. But there were also some widely used conceptual structures that were
related to the conceptual supports used in the classroom. To summarize and over-
simplify, children in the Problem Centered Mathematics Project (PCMP) project fre-
quently used for two-digit addition or subtraction sequence methods that begin with
one number and mixed methods. For three-digit problems, adding up to make tens
and hundreds was popular, and “mixed taking” from larger multiunits was used fre-
quently. Children in the Conceptually Based Instruction (CBI) project most frequently
used methods in which multiunits were added or subtracted separately. Children in
the Cognitively Guided Instruction (CGI) project varied considerably from one class-
room to another and within classrooms, with many children using methods in
which multiunits were added or subtracted separately. Sequence methods that
begin with one number were also often used for two-digit problems. In the early Supporting
Ten-Structured Thinking (STST) projects, children predominantly used methods in
which multiunits were added or subtracted separately. In the Latino project, children
tended to look more like Cognitively Guided Instruction children, with considerable
variability between and within classrooms, though adding or subtracting multiunits
separately predominated. 

In all projects, most children understood the multidigit addition and subtraction
methods they used (e.g., Carpenter et al., in press; Fuson et al., in press; Hiebert &
Wearne, 1996). Thus, clearly, the nature of the conceptual supports available in a
given classroom directs and constrains the conceptual structures built by individ-
ual children, though this building is a long, slow process in which considerable vari-
ability arises from the learning history and individual learning experiences of
each child. Children attend to, hear, and see the “same” classroom experience (e.g.,
a class discussion of alternative solution procedures) according to each child’s con-
ceptual structures at the time. Of course, children also have different mathemati-
cal experiences even in the same classroom (e.g., working with different partners
or small groups).

What is common to the conceptual supports in all classrooms, in addition to the
use of word-problem situations and an emphasis on discourse about problem solu-
tions, is the provision of sustained opportunities (a) to construct triads of connected
conceptual structures that relate ten-structured quantities to number words and to
written two-digit numerals and (b) to use these triads in solving multidigit addition
and subtraction situations. The multidigit addition and subtraction methods given
in Tables 1 and 2 can be carried out as counting or adding or subtracting actions
on multiunit quantities (objects or drawings), as verbal abbreviations of these
counting or adding or subtraction actions in which quantities are not perceivable
by an onlooker (but may be generated mentally by the child using the method), or
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as written numerals recording quantities and/or counting or adding or subtracting
actions on quantities. 

Written recordings have two advantages over verbal methods. First, they serve
as memory supports and allow a child to do the several steps involved in most mul-
tidigit solutions without needing to remember the results of each step. This may be
important for weaker children initially because they may have difficulty keeping
track of multiple steps. For some very able children, as discussed earlier, this will
be less necessary initially because they can construct mental methods, but it is impor-
tant to record these methods, at least sometimes, to support their later extension to
larger numbers. Second, written recordings remain after the problem solution, and
thus support reflection and discourse about that solution method. However, the use
of numerals does run the concatenated single-digit risk, that the constantly seduc-
tive digits will elicit a concatenated single-digit conception that will insufficiently
direct and constrain a solution. This risk may be reduced if problems are written
in a horizontal fashion or if vertical problems are linked tightly enough to adequate
ten-structured conceptions.

Experiences in two projects suggest that it may be better to intermix multidigit
addition and subtraction fairly early. There is direct evidence from the PCMP that
sustained experience solving problems requiring multidigit addition before solv-
ing problems requiring multidigit subtraction will for some children support an incor-
rect generalization of an addition solution method to subtraction (subtract the
decade and subtract both ones). In the CBI project, such a separation of addition
and subtraction problems (created by the constraints of traditional textbook
sequencing, which the CBI project followed to permit their control comparison) might
also have contributed at least somewhat to the CBI children’s greater difficulty in
devising a written method for subtraction than for addition. Their adding-like-multi-
unit frame suggests “adding and then fixing the total if necessary,” but this frame
does not generalize to subtraction. In subtraction, one has to get more multiunits
(fix the large number) before one can subtract. With objects, one can just subtract
from the next larger multiunit (take ones from a ten), but translating this into a writ-
ten method seems to have been difficult for some children. Children with support
did devise written methods through discussions of their actions on blocks.

CONCLUSION

We have found that the deep, and sometimes heated, discussions over the sev-
eral years of the working group have enabled us to clarify the solution methods used
in each project, articulate the conceptual supports available in the classrooms, and
move toward an understanding of the conceptual structures children are using in
the wide variety of place-value and multidigit addition and subtraction situations
encountered in the various projects. There is still much to learn and to articulate con-
cerning how conceptual supports in the classroom enable children to construct and
use robust multidigit conceptual structures. This learning and articulation must be
accompanied by increased understanding about supportive (and interfering) roles
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of classroom discourse and of the teacher, understandings we are presently trying
to articulate for all our projects (Hiebert et al., 1997). We hope that this articula-
tion of children’s multidigit conceptual structures and multidigit addition and
subtraction methods will stimulate others to engage in the complex task of under-
standing how classroom mathematical activities enable children to engage in
accurate and robust mathematical thinking and doing.
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