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Year-long classroom teaching experiments in two predominantly Latino low-socioeconomic-
status (SES) urban classrooms (one English-speaking and one Spanish-speaking) sought to sup-
port first graders’ thinking of 2-digit quantities as tens and ones. A model of a developmental
sequence of conceptual structures for 2-digit numbers (the UDSSI triad model) is presented to
describe children’s thinking. By the end of the year, most of the children could accurately add
and subtract 2-digit numbers that require trading (regrouping) by using drawings or objects and
gave answers by using tens and ones on various tasks. Their performance was substantially above
that reported in other studies for U.S. first graders of higher SES and for older U.S. children. Their
responses looked more like those of East Asian children than of U.S. children in other studies.

The larger contexts for the problems addressed by this study are the considerably
lower level of primary school mathematics learning by children in the United States
compared with that of children in China, Japan, and Korea (Fuson & Kwon,
1992a, 1992b; Geary, Bow-Thomas, Liu & Siegler, 1996; Miller, 1990; Miller &
Stigler, 1987; Song & Ginsburg, 1987; Stephenson & Stigler, 1992; Stigler, Lee,
& Stephenson, 1990) and the reform efforts of the National Council of Teachers
of Mathematics (NCTM) to bring about mathematics classrooms appropriate for
the future needs of society (NCTM, 1989, 1991). The special challenges are the par-
ticularly low levels of mathematics achievement by poor urban children, especially
those who do not speak English or who have parents with low levels of education
(e.g., Secada, 1992).

These issues were addressed by undertaking a year-long teaching experiment (or devel-
opmental research, Gravemeijer, 1994a, 1994b) in two first-grade classrooms in an urban
school with a predominantly low-socioeconomic-status (SES) Latino population.
The backgrounds of children in English-speaking and Spanish-speaking classrooms
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differ (e.g., children in the latter are more recent immigrants). For this reason, and
to explore issues of language differences, we selected one classroom in each lan-
guage (Spanish and English). We did not envision an experimental contrast
between these two classes, but only a test of our approaches in both languages and
with a range of Latino-background children. The mathematical foci were addition
and subtraction of quantities expressible by two-digit numbers and place-value con-
cepts (the conceptual relationships among number words, two-digit numerals,
and quantities). This study was an extension of earlier theoretical (Fuson, 1990) and
instructional development work (Burghardt & Fuson, 1997; Fuson & Briars, 1990;
Fuson, Fraivillig, & Burghardt, 1992; Smith, 1994). We sought to develop learn-
ing activities that fit the ecology of urban Latino classrooms. 

The first purpose of this article is to describe two aspects of the research that may
be particularly helpful to others: (a) a developmental sequence of conceptual
structures for two-digit numbers that guided the instructional design work and (b)
conceptual supports used to assist children’s construction of these conceptual
structures, especially a method for children’s drawing of quantities organized by
ten that solved major pragmatic and instructional-assessment issues and afforded
multiple solution methods. The developmental sequence of conceptual structures
was modified as it was clarified for the several drafts of this article. The second pur-
pose of this paper is to describe the learning of the children in the two classes as
it compares with that of East Asian and U.S. samples. We first briefly summarize
our theoretical perspectives on learning and on teaching. 

THEORETICAL PERSPECTIVES ON LEARNING AND ON TEACHING

The theoretical perspectives on learning and on teaching used by the research team
were a constructivist view of learning (e.g., Steffe & Gale, 1995) and a Vygotskiian
(1934/1962, 1978, 1934/1986) view of teaching. We view children as meaning mak-
ers who use conceptual structures to interpret what they see, hear, and feel (see Fuson
et al., 1992, for a fuller discussion). We view teaching as (a) assisting children (Tharp
& Gallimore, 1988) to build conceptual structures and conceptual methods that are
useful within a cultural domain (such as two-digit addition and subtraction) and (b)
assisting children to build more advanced conceptual structures and methods as they
become able to do so. Assistance includes using activities that can enable children
to construct knowledge that is required for more advanced methods. 

This combination of views leads to a conception of teaching and learning in action
in the classroom at a given moment as assisting the performance of children with
their own individual meanings-in-the-making. Such assistance needs to be
adapted to a given child’s conceptual structures; this adaptation requires that the
teacher ascertain what conceptual structures each child is using. Therefore,
teaching requires continual learning about the knowing states of children in
assessing-assisting cycles that may be as short as a few seconds (e.g., when the
teacher is assisting an individual child) or much longer (e.g., looking at written
work to try to understand children’s thinking). 
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Assessment is often used in schools to rank order children for various pur-
poses, and many assessments do not give much insight into children’s thinking. We
use the term assessment to mean any teacher-child interaction (directly or by
means of a child’s work) that enables the teacher to learn about the child’s think-
ing in order to adapt teacher assistance to the state of the child’s conceptual struc-
tures. This assistance may take the form of helping a child to develop a more robust
structure or to move on to more advanced conceptual possibilities. In new or
complex domains of knowledge that have multiple arbitrary cultural aspects (e.g.,
place-value writing of quantities from 10 to 99), the teacher may need to model or
lead knowledge-building activities initially, gradually withdrawing as children become
more capable but still monitoring to offer assistance as needed. In domains in which
most children already have knowledge (e.g., single-digit addition), the teacher can
begin near the end point of this assistance continuum by allowing children to invent
their own solution methods, with assistance from the teacher or peers for those who
need it.

Our Vygotskiian view of teaching also leads us to consider very carefully the con-
ceptual tools that might help children understand the cultural words and written sym-
bols of a domain (the mathematical referrers) as well as understand the quantities
and operations of a domain (the mathematical referents). The cultural referrers in
mathematics sometimes have complexities that render them difficult for some chil-
dren to understand, and quantities likewise may not be so nicely organized as to be
clear in the real world. Furthermore, children can construct meanings for the
mathematical referrers only by relating them to their referents. Therefore, some kind
of quantity referent needs to be present in the classroom. Our developmental
research focused heavily on the invention of conceptual tools—conceptual supports—
that would help children build meanings in the domain. We considered each of these
conceptual tools to be only a potentially meaningful tool whose actual meaning would
depend upon its interpretation by each individual child.

ANALYSIS OF THE MATHEMATICAL DOMAIN
OF MULTIDIGIT NUMBERS

A Model of Conceptual Structures Used in the Domain of Two-Digit Numbers

We think of conceptual structures as hypothesized categories of quantitative activ-
ity that seem useful in understanding teaching and learning in a domain. These cat-
egories have been identified by reflecting on our own extensive experiences with
children’s activity in this domain, from others’ published reports of their own expe-
rience, and by conversations with others about their experiences. To us, a conceptual
structure for multidigit numbers is (a) a structuring of—a particular viewing of—
the quantities, number words, and written numerals so that these can be understood,
counted, added, or subtracted in particular ways and (b) the knowledge required to
understand, count, add, or subtract in those ways. As researchers, we make judg-
ments that children are demonstrating a particular conceptual structure at a particular
time, but of course we can only make inferences about the point of view of, and the
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knowledge used by, another. We have found the following model of conceptual struc-
tures for two-digit numbers to be useful in organizing our understandings of the research
literature, designing the teaching-learning activities, and analyzing our data about
children’s mathematical activity.

Earlier literature identified three correct conceptions demonstrated by children
in the United States: a unitary conception in which children count a two-digit quan-
tity by ones, a sequence-tens conception in which they count by tens and then by
ones, and a separate-tens-and-ones conception in which the units of tens and the
units of ones are counted separately (see Fuson, 1990, for a review of this litera-
ture). An example is counting three bars (each made from 10 Unifix cubes) and 2
extra cubes: Children demonstrating a unitary conception would count all 32 of the
unifix cubes (1, 2, 3,…, 32); children demonstrating a sequence-tens conception would
count “10, 20, 30, 31, 32”; children demonstrating a separate-tens-and-ones con-
ception would count “1, 2, 3 tens and 1, 2 ones. 32.” 

These conceptions are also demonstrated in solving two-digit addition and sub-
traction problems. Each conception gives rise to more than one method (see
Fuson, 1990, and Fuson, Wearne, et al., 1997, for discussions and examples). However,
many children in the United States instead view two-digit numbers as two separate
single-digit numbers. This concatenated single-digit meaning does not suggest or
constrain correct addition or subtraction methods. Instead, some children just
combine arbitrary single digits (e.g., even adding all four digits in two 2-digit num-
bers), leading to various well-documented errors (e.g., see VanLehn, 1986, for a
discussion). This concatenated single-digit meaning is constructed when too few
opportunities are given to children to link accurate multidigit quantity meanings to
the written numerals used in adding and subtracting.

Our view of these conceptions is that each involves a triangle of relationships among
quantities, number words, and written numerals. For single-digit numbers, 3 two-
way links form the triangle (see Figure 1). Each one-way link relates the aspect ini-
tially seen or heard to another aspect. For example, I hear five and think or see or
write the numeral 5 (bottom left-to-right arrow), or I see five birds and think or say
five (left arrow from top to bottom). In the concatenated single-digit conception of
two-digit numbers (see Figure 1), these six relations are constructed for each sin-
gle digit in a two-digit number.

Our triad model of two-digit conceptions is shown in Figure 2. We call this model
the UDSSI triad model for the names of the five conceptions (unitary, decade, sequence,
separate, integrated). This model extends the earlier classification of unitary,
sequence, and separate conceptions by adding the decade and integrated conceptions.
The conceptual structures in Figure 2 are arranged developmentally from the out-
side in, except for the innermost two (sequence and separate). These two depend heav-
ily on learning opportunities and may be learned independently of each other. The
UDSSI model was presented in a developmental form in Fuson, Wearne, et al. (1997);
that form showed more clearly how the conceptual structures grew one from
another developmentally and experientially. The form shown in Figure 2 empha-
sizes the relationships among all the conceptual structures. Stimulating children to
construct that related web was a primary goal of our teaching experiment.
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Figure 1. Unitary triad (quantity, number word, written numeral) and common incorrect multidigit
conception derived from the appearance of the multidigit numbers

All children begin with a unitary conception that is a simple extension from the
unitary triad for single-digit numbers. With this conception, the separate number
words and the two digits have no quantity referents by themselves. The entire num-
ber word (e.g., sixteen) or numeral (16) refers to the whole quantity. 

With time and experience, each number word and each digit does take on a mean-
ing as a decade or as the extra ones in the decade-and-ones conception. For exam-
ple, in 53, the 5 means fifty and the 3 means three. This conception was identified
by Murray and Olivier (1989) and discussed in Fuson, Wearne, et al. (1997).
Some children write numbers as they hear the decade word: “I hear fifty and then
a three, so I write 50 and then 3, so 503.” The numerals for this conception can be
understood more clearly if we think of the ones as written on the decade numerals:
The arrow in Figure 2 shows the 3 going on the 0 in 50.

In the sequence-tens-and-ones conception, an extension of the decade concep-
tion, units of ten single units are formed within the decade part of the quantity. These
sequence-tens units are counted by tens (e.g., 10, 20, 30, 40, 50). Initially with the
sequence-tens conception, the person counting has no immediate way to know that
there are 5 tens in fifty. A user of this conception can find out how many tens by
counting “10, 20, 30, 40, 50” while keeping track of the five counts. 

The separate-tens-and-ones conception is built through experiences in which a
child comes to think of a two-digit quantity as comprising two separate kinds of units—
units of ten and units of one. Both kinds of units are counted by ones (e.g., “1, 2,
3, 4, 5 tens and 1, 2, 3 ones”). In Figure 2, we show these units of ten as a single
line to stress their (ten)-unitness, but the user of these units understands that each
ten is composed of 10 ones and can switch to thinking of 10 ones if that approach
becomes useful. 

Children’s construction of the sequence-tens and separate-tens conceptions
depends heavily on their learning environments. However, individuals in the same
classroom may construct one or the other of these first. Which is first may depend

five 5 five three

five three
Unitary Concatenated single digit

5 3

Initial conception Incorrect conception
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partly on whether a child focuses on the words, which facilitate the sequence-tens con-
ception, or on the written numerals, which facilitate the separate-tens conception.

Figure 2. A developmental sequence of conceptual structures for two-digit numbers: the UDSSI
triad model

Unitary

Decade and ones

Sequence tens
and ones

Integrated tens
and ones

Separate tens and ones

Quantities

Words Marks
Tens/ones

five tens three ones
Tens/ones

5 3
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number words

fifty three
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5
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3
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3
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3
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5
fifty

5
fifty

(50) (3)

5 3

fifty-three

Conceptions of the quantity

1, 2, 3, 4,…53 
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10 20 30 40 50

51 52 53

1 2 3 4 5
tens

1 2 3
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Children may eventually relate the sequence-tens and separate-tens concep-
tions to each other in an integrated sequence-separate conception (these connections
are shown in Figure 2 as the short double arrows). In the integrated conception, chil-
dren connect fifty to 5 tens, and the written numeral 53 can take on either quantity
meaning (fifty-three or 5 tens, 3 ones).

We originally thought about each two-digit conceptual structure as a triangle (a
triad) of six relations. However, it later became clear that only the separate-tens-
and-ones conception has direct links between quantities and numerals. Such a direct
link can occur only where the quantities of tens and ones are small enough to be
subitized (immediately seen as a certain number of units) or are in a pattern. The
other three conceptions must relate quantities to written numerals through the num-
ber words by counting. Therefore the link between quantities and numerals is not
drawn in Figure 2 for these conceptions.

Use of the Triad Model in Our Study

Our analysis of the structure of Spanish words for two-digit numbers suggests
that Figure 2 describes the main conceptual structures that Spanish-speaking chil-
dren construct, albeit with some small advantages and disadvantages compared with
English speakers. Spanish uses a list of decade words (diez, veinte, treinta, cuarenta,
cincuenta, sesenta, setenta, ochenta, noventa). The relationship of these to the words
for one to nine (uno, dos, tres, cuatro, cinco, seis, siete, ocho, nueve) is not very clear.
This lack of a clear relationship is similar to the rather opaque relations of the English
words twenty and two, thirty and three, and fifty and five. A special issue for
Spanish is that sesenta and setenta sound very much alike. This similarity makes
learning these words difficult for some children (Fuson & Smith, 1997). Spanish
words from 21 on use the construction cincuenta y tres (fifty and three), which would
seem to support children’s construction of the decade-and-ones conception. Spanish
words in the teens are irregular at first and then begin to name the ten at 16: once,
doce, trece, catorce, quince, dieciséis, diecisiete, dieciocho, diecinueve. A less com-
mon alternative spelling is conceptually clearer: Diez y seis means “ten and six,”
whereas dieciséis means “tens six.” Thus, the conceptual contribution of the words
for 16 through 19 may depend heavily on the emphasis given by the teacher to the
“ten and six” meaning. Most European systems of number words for two-digit num-
bers have a decade structure, although with various irregularities (see Fuson & Kwon,
1991/1992, for an analysis and Menninger, 1958/1969, for details). The UDSSI triad
model, therefore, would seem helpful for these other European languages also.

Our goal in this study was to help children in both the English-speaking and Spanish-
speaking classrooms construct all of the triad conceptual structures. But in what order
were we to help them and how? Two other perspectives contributed major elements
to the design of the learning activities.

The first perspective is the literature on East Asian children’s multidigit learn-
ing. Two conceptual structures in Figure 2 (the decade and the sequence-tens
structures) come from the decade structure of the English number words. Some coun-
tries have number words with no separate list of decade words. For example, in East
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Asian countries in which the number words are based on ancient Chinese number
words, children say 12 as “ten two” and 53 as “five ten three.” These children need
to construct only the unitary and the separate-tens-and-ones conceptual struc-
tures. The construction of the latter triad is supported by the presence in children’s
lives of ten-structured cultural artifacts and experiences (e.g., the abacus, the met-
ric system), by the teaching in schools of ten-structured methods for adding and sub-
tracting single-digit and multidigit numbers (Fuson & Kwon, 1992a, 1992b;
Fuson, Stigler, & Bartsch, 1988), and by the support of parents and teachers in demon-
strating ten-structured quantities (Yang & Cobb, 1995). Cross-cultural work on East
Asian children’s numerical thinking indicates that they build highly effective ten-
structured conceptions of numbers; use these very well in their addition and sub-
traction; and far outperform U.S. children on single-digit and multidigit addition,
subtraction, and place-value tasks (Geary et al., 1996; Fuson & Kwon, 1992a, 1992b;
Miller, 1990; Miller & Stigler, 1987; Miller & Zhu, 1991; Miura, Kim, Chang, &
Okamoto, 1988; Miura & Okamoto, 1989; Miura, Okamoto, Kim, Steere, &
Fayol, 1993; Song & Ginsburg, 1987; Stigler et al., 1990).

The simplicity of this inner triad suggested to us that it might be easier for English-
speaking children to construct than the decade and the sequence-tens conceptions. Also,
with the separate-tens-and-ones conception, children could participate in classroom
activities involving ten-structured quantities before they learn the English (or
Spanish) sequence to 100, which can take months or years (Fuson, Richards, & Briars,
1982). To facilitate the separate-tens-and-ones conception, we decided to use tens-
and-ones words to describe quantities. It also seemed possible that the construction
of the decade and of the sequence-tens conceptions might be facilitated by activities
that also simultaneously supported the construction of the separate-tens-and-ones con-
ception, such as arranging quantities in groups of tens, counting them by tens and ones
(a sequence-tens conception), and counting the units of ten and the units of one sep-
arately (a separate-tens-and-ones conception). Using both tens-and-ones words and
ordinary English or Spanish words would help focus children on each conception (i.e.,
on the separate-tens and on the sequence-tens conceptions, respectively). 

Several design decisions stemmed from our experience with earlier studies of chil-
dren using base-ten blocks to construct multidigit conceptions and then either learn-
ing traditional algorithms with understanding (Fuson, 1986; Fuson & Briars,
1990) or inventing calculation methods (Burghardt & Fuson, 1997; Fuson et al., 1992).
First, we found that some children needed a long time (weeks or months) to con-
struct the conceptual structures shown in Figure 2 (though the earlier studies con-
cerned four-digit calculation and so were more complex). Second, doing problems
requiring regrouping enabled children to use the ten-for-one relationship between
adjacent numeral positions. For these two reasons, rather than try to ensure place-
value understanding before moving to addition, we viewed addition and subtrac-
tion work as important settings for children’s continued construction of place-value
conceptions. Third, doing problems without regrouping does not use the ten-for-
one quantity values and, in subtraction, sets up the common top-from-bottom
error. We began, therefore, with two-digit problems requiring regrouping. Fourth,
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our experience indicated that children needed to explore two-digit addition and sub-
traction using ten-structured quantity referents, not just numerals, to construct robust
ten-structured conceptions. Therefore we had to select and design such referents.

Instructional Design Issues and the Teaching-Learning Activities

Our instructional-design work focused on the goals previously stated: build
activities that would help children construct all the conceptual triads simultaneously
and then move to two-digit addition and subtraction by using ten-structured quan-
tity referents. This approach also had the pragmatic advantage of permitting a whole
class of children to participate in activities even though they were using different
conceptual structures.

We faced various pragmatic constraints concerning our choice of quantity ref-
erents to use in the classroom because we wanted them to be usable in any inner-
city classroom. Therefore they had to be easy to manage, inexpensive, and require
minimal teacher-preparation time. Although we did not plan to use the referents to
teach standard algorithms, we felt that they had to be easily usable for these meth-
ods because some teachers might be under pressure to use them in this way, at least
until reform efforts reached their schools or their communities.

Our Vygotskiian view of teaching also influenced the design of the teaching-
learning activities. We were trying to help children build complex related webs
of new knowledge. Therefore, for the initial triad activities, the teacher at first
led simultaneous performance by all children together; each child did the activ-
ity at his or her seat, following or with the teacher. We began with activities designed
to help children (a) see objects grouped into tens and (b) relate these ten-group-
ings and the leftover ones to number words and written numerals. For eight class
sessions in the fall, children used a penny frame into which they fitted pennies
in rows of ten; after they put a penny into the frame, they wrote below that penny
the new total number of pennies they had placed in the frame. Other triad ref-
erents were tried out several times each for part of a class period during the fall:
a hundreds matrix of numbers in rows of tens, number cards (invented by the sec-
ond author) with tens as bars of ten connected squares and ones as a connected
partial bar, pennies counted into groups to make nickels or dimes, and $1 bills
counted into groups to make $10 bills. 

In all these activities, the teacher used each of the triad conceptual structures suc-
cessively in various orders. For example, pennies were placed individually into the
penny frame while the teacher counted each one unitarily. As the activity progressed
over days, an increasing number of children became able to count with the teacher.
As each ten row was filled, the rows of ten would be counted by tens (e.g., 10, 20,
30) and then by ones (1, 2, 3 groups of ten). All the pennies might then be counted
again by ones to verify that there were 30 pennies in the three groups of ten. Written
numerals would be read as English words (in the Spanish-speaking class, as
Spanish words) and as tens-and-ones words: “So 36 is thirty-six pennies, three groups
of ten pennies and six loose pennies left over. We write three tens here on the left
and six ones here on the right.” Assessing was done by sometimes letting children
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respond first and by looking at the numbers that children wrote. Gradually in each
of these activities, the whole class or individual children would take over more of
the task. Finally, individuals would do the task alone with informal help from peers
and the teacher. 

Base-ten blocks and other object quantities leave no records after class to help
teachers assess their students’ understanding. We therefore introduced a system of
recording quantities as ten-sticks and dots, which children could count by using any
of the conceptions. Initially, children made dots in columns of 10 to make a record
of objects the class was collecting. They counted by ones as they made these columns
of 10 dots. When they had fewer than 10 left, they made a horizontal row of dots
(often with a space between the first five dots and the last four dots to facilitate see-
ing how many dots there were). To check a quantity, children could then count all
the dots by ones (unitary conception), count the columns by tens (sequence-tens con-
ception), or count the columns as tens (separate-tens conception). These different
ways to count were all modeled by the teacher and by individual children at the chalk-
board. These ten-structured arrangements were potentially more accurate than
the unitary drawings ordinarily made by children because the ten-columns gave feed-
back about the making and counting at each ten. This feedback at the end of each
ten also helped a child begin to construct conceptions of counting groups of ten. When
many children could make such drawings confidently, the columns of 10 dots were
connected; children drew a line through them as the counting by tens or of tens was
done. Some children had already spontaneously begun to do this. Eventually only
the vertical stick was drawn to show a ten. These activities occupied part of the class
period for about 2 weeks.

Most of the new teaching activities were initiated by two full-time members of
the research team for several reasons. One was that we designed and adapted the
teaching-learning activities throughout the year in many cycles of design-try-
reflect-redesign; this required more meeting time than was available to the class-
room teachers. Another is that we wanted the activities to be led initially by
teachers who shared our theoretical views of teaching and of learning and with our
understanding of the conceptual structures we were attempting to support. One research
teacher worked in the English-speaking class, and the other research teacher
worked in the Spanish-speaking class. As the regular classroom teacher became famil-
iar with an activity, she would take over some or all of the teaching. The research-
team teachers were in the classroom 5 days a week from late September through
November and then on Mondays, Tuesdays, and Wednesdays for the remainder of
the year. On Thursdays and Fridays the classroom teachers continued with their usual
approaches to nonproject topics. During the fall, activities on single-digit addition
and subtraction to ten and word problems occupied much of the time.

Activities varied somewhat between the English-speaking and Spanish-speak-
ing classes for two reasons. First, the standardized tests differed for the two
classes. Chicago Public Schools gave the Iowa Test of Basic Skills (ITBS) to English-
speaking classes and La Prueba (Riverside Press) to Spanish-speaking classes. The
Iowa test had two-digit subtraction with trading and no three-digit problems, and
La Prueba had three-digit addition but no two-digit subtraction with trading. We
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felt pressure to help children prepare adequately for the tests. Therefore, we var-
ied the nature of the activities after two-digit addition to match the tests. The sec-
ond reason was that the Spanish-speaking research teacher used three new
conceptual supports to assist children over conceptual hurdles she saw arising in
class. Two of these facilitated the decade conception, and the other labeled the left-
right tens-ones writing of two-digit numbers. First, she several times discussed an
invisible zero hiding under the ones digit; a dotted 0 was drawn in the ones place
to show a ten as 10 (or four tens as 40), and the number of ones was written on the
dotted 0. Second, she briefly used number cards with bars of ten and the decade at
the top (e.g., 60) and unit cards that fit over this 0. Third, she drew a particular sup-
port used in some South American mathematics textbooks: A long vertical line seg-
ment was crossed near the top by a horizontal segment, creating a space to label the
columns as dieces and unos (or later, just D and U). Children frequently wrote this
on their own papers.

After considerable discussion with the classroom teachers, the research team decided
on “five tens and three ones” and “cinco dieces y tres unos” for the tens-and-ones
words. In Spanish-speaking classrooms, the words decenas and unidades are typ-
ically used for the tens and ones positions. But these words are rarely used outside
school, and so they have no meaning for children. We therefore used the meaningful
words for tens and ones (dieces and unos). We did begin to use decenas and
unidades before the standardized test. 

We also explored the extent to which we could support children in learning for
single-digit addition and subtraction the mental ten-structured methods used by chil-
dren in East Asia. Various activities were tried beginning in January, including ver-
tical-number-line or number-bar activities. None seemed particularly powerful or
interesting to the children. In mid-February, rows of dots were made for each addend;
10 dots were enclosed, if possible, and the answer was then recorded as “one ten
and x ones.” During the winter and spring for a few minutes on many days, chil-
dren solved addition and subtraction problems with sums in the teens; they then demon-
strated various finger methods they were using. Explicit practice activities focused
on the prerequisites for the ten-structured methods (How many more to make ten
with a given number and ten plus x = ?). By midyear most children were counting
on or using fingers in other ways that could lead to ten-structured methods (Fuson,
Perry, & Ron, 1996), but most were not yet doing mental ten-structured methods,
as most Korean children do by midyear (Fuson & Kwon, 1992a). The results of the
finger work are reported in Fuson, Perry, and Ron (1997). 

We decided to use the ten-sticks and dots for two-digit addition and subtraction
for their advantages as written records and for cost and management reasons.
Teachers used this activity periodically from late February through May. In the English-
speaking class, children did triad review activities for 2 days and then had four classes
on two-digit addition. Six classes on two-digit subtraction (in April and May) were
followed by six sessions of mixed addition and subtraction problems with and with-
out trading (in May). The time spent on these two-digit activities averaged 30 min-
utes for each class. The Spanish-speaking children spent about this same amount
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of time on triad activities, two-digit addition with trading, three-digit triad activi-
ties (drawing squares for hundreds), three-digit addition with no trading, and two-
digit subtraction with no trading. 

Addition and subtraction lessons typically began with instructional conversations
in which the teacher elicited children’s ideas about methods. Each method was then
carried out by the whole class together. Children then worked alone, solving prob-
lems by any method. Conversations to facilitate children’s reflections on, and com-
parisons of, methods were intermixed with periods during which children worked
alone (or spontaneously together). As errors arose, the teacher also identified and
discussed them. Children explained why these examples were errors and how to cor-
rect them. Showing errors was sometimes done in a playful “Can you catch me?”
mode that the children greatly enjoyed. Sometimes several solve-then-discuss
cycles occurred in one class period. Assessment was done by individually moni-
toring children during the work periods, by eliciting children’s responses during dis-
cussion, and by looking at children’s ten-sticks and dot records of problem solving.
In the English-speaking class, we also tried one-item or two-item quizzes at the begin-
ning of class to monitor the children’s progress.

To facilitate meaning making by children, we used problem contexts involving pack-
aging for addition and subtraction problems. For example, doughnuts packed in boxes
of 10 were bought and sold, so a new box was packed (addition) or opened (subtraction)
as necessary. Children could use either sequence-tens or separate-tens conceptions
in adding or subtracting; they counted the “stick and dot” (“las barras y los puntos”)
quantities they drew by tens and ones (10, 20, 30, 40, 41, 42, 43) or as tens and as ones
(1, 2, 3, 4 tens and 1, 2, 3 ones). Figure 3 shows examples of children’s addition and
subtraction drawings. Usually in addition dots were combined to make another ten
when possible; in subtraction, a ten-stick was opened (its 10 dots were drawn within
an ellipse or rectangle) when necessary. Many individual variations appeared in the
drawings and in the links that children made to written numerals.

This work with multidigit addition and subtraction was an opportunity for children
to continue to construct and to use in more complex activities their fledgling two-digit
conceptual structures and to fill in pieces that might be missing or weakly understood.
The two-digit activities were viewed as complex, multistep, goal-directed sequences
requiring conceptual quantity understanding linked to the domain words and written
numerals, that is, to the social-cultural semiotic domain tools. 

At the end of the fourth addition class, seven children in the English-speaking class
still had substantial misunderstandings of some aspect of tens and ones or of
multiunit addition. We decided to explore the efficacy of individual tutoring ses-
sions to see how much additional assistance would be necessary to bring all these
children to some minimum level of understanding. Multiple individual tutoring ses-
sions were carried out with these seven children; most participated in three to five
sessions. This tutoring also covered multidigit subtraction for some children. Five
other children received one or two sessions of tutoring for specific errors that arose
later in their addition or subtraction. The main focus of tutoring sessions was to ascer-
tain a given child’s errors within his or her chosen method and then to support the
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child’s correction of that error by an instructional conversation about the error. The
tutoring yielded rapid progress in every case in which it could be used. However,
some children needed reviews on tutored concepts, and some children were not in
school regularly enough to receive sufficient tutoring. Details of errors children made
and of tutoring methods are given in Fuson and Smith (1997).

Figure 3. Addition and subtraction methods using ten-sticks and dots.
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METHOD

Participants

The K–8 school in which the study took place is located in a predominantly Latino
neighborhood. Most families have at least one wage earner, but wages are low.
Consequently, 87% of the students qualify for free or reduced lunch. Each grade
level from 1 through 5 has a Spanish-speaking and an English-speaking class. Spanish-
speaking children are bused in from six other elementary schools to complete the
Spanish-speaking classes. Mathematics classes and most other classes are carried
out almost entirely in the specified language (English or Spanish). Many children
in the English-speaking classes also speak Spanish, and some children in the
Spanish-speaking classes also speak at least some English. Parents can choose which
class their child attends, but the child must demonstrate sufficient competency in
English to be placed in the English-speaking class. Roughly a quarter of the first
graders had attended neither kindergarten nor nursery school before first grade.

All first graders who had entered the school by mid-December were included in
the study sample. The Spanish-speaking first-grade class varied in size from a low
of 17 children at the end of September (children continue to enter school over the
first several weeks of school) to a high of 28 children. For this study, the sample
was the 17 children who were in the class from mid-December through June. The
English-speaking class varied in size from 24 to 28 children, with 33 different chil-
dren present at some time. The sample for the end-of-the-year interviews was the
20 children who were in the class from mid-December through June and were avail-
able for end-of-year interviewing.

In-Class Place Value, Addition, and Subtraction Learning

During the teaching experiment, various data were gathered concerning children’s
learning of place-value concepts, two-digit addition, and two-digit subtraction. Notes
were made about various aspects of children’s learning and about errors children
made, including analyses of homework and classwork. Classwork was collected on
some days. One-item quizzes were given in the English-speaking class. The reg-
ular classroom teachers reported issues they thought important. These data are sum-
marized in the beginning of the results section.

End-of-the-Year Interviews

Individual interviews were carried out in late May and early June with all sam-
ple children. Interview items were selected mainly from other published studies to
obtain data on our children that could be compared with the data reported in these
other studies. The interviews contained a large number of items. Therefore, some
items were given to all children, and some were given only to a subsample of chil-
dren drawn from across the whole achievement range of the class. If a child
became tired during any interview, the interview was completed at another time.

Triad tasks. Triad questions examined which of the various relationships in Figure
2 had been learned by children for the ten-sticks and dots quantities. On different
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items, for a given ten-sticks and ones quantity, children were asked to say how many
in English (or Spanish) words and in tens-and-ones words and to make written numer-
als for that many ten-sticks and dots. They were asked to make numerals and ten-
sticks and dots for English (Spanish) number words and for tens-and-ones words
and to make ten-sticks and dots for numerals.

The following cardinal-tens task, based on a task devised by Hiebert and Wearne
(1992), was used to assess whether children could conceptualize groups of ten in
a two-digit number: “There are 53 first graders at Esperanza School. How many teams
of 10 children could you make with these 53 children? Why?”

An item from Miura et al.’s (1993) task for assessing cognitive representation of
number (the child’s conceptual structure for a two-digit number) was given.
Children were shown a two-digit number (42) written on a card. They were asked
to make that number from a pile of base-ten blocks (1 × 10 longs and unit blocks).
Our children had not previously made two-digit numbers with base-ten blocks.

Place-value understanding. Four tasks were given to assess the children’s
understanding of the quantity referenced by the tens digit. The first was the Kamii
task (Kamii, C., 1985, 1989; Kamii, M. 1982). Children are shown the number 16
written on a card. They are asked to make that many chips from a pile of chips. The
interviewer then gestures to the 6 and asks, “What does this part mean? Show me
with the chips what this part means.” Children almost invariably count out 6 chips
from their pile of 16 chips. The interviewer then gestures to the 1 and asks, “What
about this part? Show me with the chips what this part means.” Many children show
1 chip rather than indicate the remaining 10 chips (or any 10 chips). 

The three other digit-reference tasks were taken from the assessment of place-
value understanding of U.S., European, and East Asian children given by Miura et
al. (1993). One was the Ross task (Ross, 1986, 1989), which adds a misleading per-
ception to the Kamii task. A child is shown 13 objects and three cups and is asked
to put 4 objects in each cup. Then the child is asked to count how many objects there
are and is shown a card with the numeral 13. The child is asked to show with the
objects the meaning of each digit. Here, the 1 object left outside a cup could be mis-
takenly associated with the 1 in the tens position, and the 3 could be taken to mean
the three cups. A second task was a noncanonical display of tens and ones quan-
tities; the number 42 was shown as 3 tens and 12 ones rather than as 4 tens and 2
ones. Miura et al. did this task with base-ten blocks, but we did it with ten-sticks
and dots to increase comparability with our other triad tasks. Our children had never
seen a ten-sticks-and-dots display like this. The third digit-reference task (a) asked
children to show two-digit numbers in base-ten blocks and (b) asked which num-
ber was the tens and which was the ones. The former part of the task was assessed
in two word problems given with base-ten blocks. The latter part of the task was
assessed in the triad tasks previously described.

Two-digit addition and subtraction with regrouping. Standard vertical two-
digit addition and subtraction numeral problems were given to all children. They
were asked to solve these with ten-sticks and dots, except for the subtraction
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problem for the Spanish class. That class had not done subtraction requiring trad-
ing with ten-sticks and dots. These children were asked to use base-ten blocks with
units marked on the tens to solve these problems.

Word problems with two-digit numbers were given with base-ten blocks to
assess the children’s abilities to generalize their ten-sticks-and-dots methods to a new
tool. Children were given one addition problem (“Roberto had 27 coins in his
bank. Then he put 36 more coins in his bank. How many coins does Roberto have
in his bank now?”) and one subtraction problem (“There were 74 children on the school
bus; 38 children got off the bus. How many children were left on the bus?”).

RESULTS

Learning in the Classroom

Tens-and-ones words and English or Spanish words. The research and the
classroom teachers reported that children found the regular tens-and-ones words eas-
ier to learn than the standard English or Spanish number words. This was especially
true for the least advanced children. Children did not seem to confuse the two kinds
of words; no construction from one kind was carried into the other kind of words.
The major difficulty in learning the number words was learning the list of tens to
100. In Spanish, sesenta and setenta were special sources of difficulty. In English
the phonological similarity in some teens and decade words (e.g., thirteen and thirty,
eighteen and eighty) sometimes led children to make errors during class activities
and seemed to interfere with learning for some children. 

Two-digit-addition learning. There was considerable variability in how children
drew the ten-sticks and dots, enclosed 10 dots, and showed the answer (see the four
methods at the top of Figure 3). Watching children solve a problem also revealed
other differences in the children’s methods. For finding the total, some children counted
ones first, and others counted tens first. For finding how many tens, some children
counted all, some counted on from the first number of tens, and some children used
known facts to add the tens (e.g., “3 tens and 2 tens make 5 tens”). Some children
integrated the new circled ten into a sequence count of the total, and others counted
it as another ten in their count of the tens. Throughout the classroom-learning period,
most children in the Spanish-speaking class demonstrated sequence-ten strategies.
Children in the English-speaking class were more evenly split between sequence-
ten and separate-ten strategies, but more demonstrated the latter.

In the English-speaking class, the numbers of children adding correctly on one-
item tests given at the beginning of the class following each of the four days of teach-
ing were 8, 13, 12, and 15 out of 24 to 26 children. On the final test, four of the nine
errors were execution (miscounting) rather than conceptual errors. Of the more sub-
stantial errors, two children reversed the answer when writing it; three were more
substantial conceptual errors. Two children still making substantial conceptual errors
were not present on that day. The major error that disappeared over these 4 days
was ignoring the extra new enclosed ten (not counting it in the total). Other types
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of errors remained relatively flat: About 5 or 6 children made minor execution errors
each day, and 2 to 4 children made fundamental grouping and quantity-represen-
tation errors (but some children making such errors were absent each day). Only
5 children were perfect on all four tests; the children making execution errors var-
ied from day to day.

Children did not spontaneously write a carry mark or write and then correct a num-
ber with too many ones (e.g., write 714 and change it to 84 after enclosing the dots).
Both of these possibilities were discussed in class. By the end of the second session,
most children preferred variations that annexed the enclosed 10 dots to a count of the
tens or to a sequence-tens count; these children did not record a 1 anywhere. These pre-
ferred methods are counting precursors to the European method of mental addition in
which the user adds from left to right and looks ahead to see if he or she will have another
in a given column before writing the total for that column. Written 1s did occasion-
ally appear in class later, as children learned them from parents and siblings.

Children in the Spanish-speaking class generated and discussed various methods
of recording the extra ten in the numeral addition problem. The worksheet in
Figure 4 shows several of these and also shows several different kinds of linking
enabled by the drawn ten-sticks and dots. This worksheet is an early form that still
showed all the ones in each ten. Children drew lines through each column of 10 ones
to make 1 ten. The addends and the total have been labeled (with some mis-
spellings) with the entities given in the word problem the children generated for that
addition combination. The children always contextualized their problems. In the prob-
lem on the top left, the child drew an arrow to move the enclosed 10 dots over with
the other tens; this reduces the chance that it will not be counted as a ten. In the prob-
lem on the bottom left, the child carried out a correct numeral method. The sum of
the ones was written, followed by the tens in each addend (14 + 30 + 20 = 64). In
the enclosed-dots part of that problem, the new ten is explicitly indicated by a 10.
For the problem on the bottom right, the child wrote a sequence counting method
that avoids making another ten by adding the top ones onto the total of the tens (80
+ 9 = 89). The child then wrote the counting-on of the bottom ones from that total
(90, 91, 92,…, 97). A numeral 1 was written above the tens column in the numeric
problem to show this counting over a decade, and the sum 97 was written both below
the sticks and dots and below the numeric problem. In the Spanish class, other writ-
ten methods of recording the extra ten that arose were to write a 10 below the sec-
ond addend or to write a small 1 (ten) on the line below the tens.

Two-Digit-Subtraction Learning in the English-Speaking Class

Many children made rapid progress in subtracting correctly. All children opened
a ten by drawing the 10 ones (see two examples at the bottom of Figure 3).
Correctly taking away the tens was particularly easy: After only two sessions, 17
of 22 children correctly crossed out the correct number of ten-sticks on the quizzes 
at the beginning of class. Total correct responding rose more slowly over the first
five quizzes: from 4 of 20 totally correct to 6 of 20, 10 of 21, 9 of 20, and 12 of 20.
Four of the 8 children with errors on the last quiz made only minor execution errors. 
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Figure 4. Different addition methods used early in the Spanish-speaking class.

The remaining 4 children were still making fundamental quantity-representation or
regrouping errors; 2 other children absent that day were also still making fundamental
errors. All these children were tutored children. Three of these children began to
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improve significantly after a few tutoring sessions. The remaining 3 children were
absent so frequently during the tutoring period that they did not receive significant
amounts of tutoring and did not improve on subtraction.

Performance on subtraction dropped somewhat when addition and subtraction
were mixed. However, by the third class with mixed operations, many children were
differentiating their addition and subtraction methods. On the last 4 days of mixed
quizzes, from 14 to 16 children (out of the 18 to 23 children present) subtracted per-
fectly with ten-sticks and dots or had begun to do all or part of the subtraction men-
tally without making ten-sticks or dots (3 children). 

Children made many more different kinds of errors in subtraction than in addi-
tion. Practically every error we could think of was made by some child at some time.
In addition problems, most errors were in regrouping, and these were of only a few
kinds. In contrast, the subtraction regrouping (opening a ten) seemed to be relatively
easy to understand and to carry out with an overall correct approach. However, it
was subject to many minor execution errors. Children almost always opened a ten
and crossed out the correct number of ones. But miscounting occasionally occurred
at each possible counting step, and children sometimes counted only part of the tens
or part of the ones. The latter was quite common because the ones for the answer
were in two separate places: the new, opened, encircled ones that had not been crossed
out and the ones in the original number. Children sometimes reversed the tens and
ones in the answer, occasionally indicating conceptual confusion. But the reversal
more often occurred when a child wrote the ones first and then wrote the tens after
(to the right of) the ones (following the usual order of writing). Methods varied across
children. Some children took away tens first, and others took away ones first. Some
children sequence-counted the answer and wrote the whole two-digit answer.
Others counted and wrote the tens and ones separately, with some children writ-
ing each first. 

End-of-the-Year Interview Results

The studies from which the end-of-the-year interview tasks were taken used sam-
ples that included considerable numbers of middle-class children. On the basis of
this class difference, our sample of predominantly poor (free lunch) children
would be expected to do less well.

Triad tasks. All children in both classes could do the tasks assessing all six rela-
tions for the inner separate-tens-and-ones triad. For the unitary conception, one child
in each class could not count to 100 by ones. These children, and an additional child
from the English-speaking class, could not count to 100 by tens. For smaller two-
digit numbers, these three children did do tasks demonstrating the relations in the
unitary and sequence-tens triads. All other children did the sequence-tens-and-ones
triad tasks correctly. Most children in the Spanish-speaking class did these directly
by counting by tens. Many children in the English-speaking class demonstrated the
separate-tens-and-ones triad relations and then translated this result to English num-
ber words (e.g., counted “1, 2, 3, 4 tens and 1, 2 ones so that’s forty-two”). 
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Many children were able to demonstrate triad relations in the cardinal ten-struc-
tured task (“There are 53 first graders at Esperanza School. How many teams of 10
can be made?”). Almost all the Spanish-speaking children (94%) and half the English-
speaking children answered correctly. Almost all of these children (92%) knew the
answer rapidly without counting or drawing. The second and third graders in the pro-
ject school had been interviewed on this task in the spring before the project began.
The Spanish-speaking first graders did considerably better than had these older
children receiving traditional textbook instruction (94% versus 32% and 50%), and
the English-speaking first graders did better than the second graders and as well as
the third graders. The Spanish-speaking class did considerably better than the Hiebert
and Wearne (1992) first graders receiving traditional instruction or the alternative instruc-
tion (story-based experiences with base-ten blocks used to build up tens-groupings
and children’s computation methods; 94% versus 50% and 63%, respectively), and
the English-speaking class did about the same as these groups (J. Hiebert, personal
communication, 8 February 1996). Our children also did considerably better than chil-
dren using Everyday Mathematics (EM), a reform curriculum (Bell & Bell, 1990):
the mean for our two classes was 72% compared with 34% for the overall EM sam-
ple containing a range of schools and 12% for EM Chicago schools (a sample more
comparable to ours) (Drueck, Fuson, & Carroll, 1997).

On various tasks that assess whether children are thinking unitarily or with tens
and ones, our first graders from both classes predominantly demonstrated tens-and-
ones thinking. Their performance thus looked more like that of East Asian children
than of U.S. children, who predominantly demonstrate unitary or concatenated sin-
gle-digit conceptions (Miura et al., 1988). The East Asian children were tested in
the first half of the year, whereas ours were tested at the end of the year, so ours are
still behind East Asian children in the timing of when they use tens and ones. On
Miura’s task of the cognitive representation of numbers, 88% of our children
made a ten-structured 42 using 4 tens blocks and 2 units blocks compared with a
mean of 89% of children from the People’s Republic of China, Japan, and Korea
making a ten-structured display (a mean of 10% of these 89% children made a non-
canonical-ten version that had some tens and more than 9 ones). When asked to make
a different block presentation for 42, only 7% of our children made a unitary pre-
sentation; a mean of 53% of the East Asian first graders made a unitary presenta-
tion. Most of the 74% of our children making a correct second presentation made
a noncanonical-ten arrangement in which some ones were arranged in groups of ten. 

Place-value understanding. On the Kamii task, 63% of our first graders imme-
diately said that the 1 in 16 was 10 chips. This is considerably higher than the 42%
of M. Kamii’s (1982) 9-year-olds who were correct and than the 32% of the sec-
ond and third graders in our project school before the project began. Our 63% is about
the same as the 60% of C. Kamii’s (1985) affluent suburban sixth graders. Our 63%
is also considerably higher than the 20% making such a response in the overall sam-
ple of children using EM and the 9% in the Chicago sample using that reform cur-
riculum (Drueck, Fuson, & Carroll, 1997). 

Children were given three place-value understanding tasks that assess children’s
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quantity meanings for each digit in a two-digit number. All tasks and comparison
samples are from Miura et al. (1993). Our first graders did as well as East Asian
children tested in the first half of the year and much better than U.S. first graders
from a selective academically rigorous school with monolingual middle- and
upper-middle-class children (that sample and our children were tested at the end
of the year).

First, on Ross’s (1986) perceptually misleading digit-correspondence task, both
of our classes (Spanish 80%, English 55%) did much better than Miura et al.’s (1993)
children from the United States (21%). The performance of our English-speaking
class (55%) was equivalent to that of Miura et al.’s children from Japan (46%), and
our Spanish-speaking class (80%) performed considerably better than the Japanese
children, although not as well as the Korean first graders (96%). 

Second, all our children indicated ones’ and tens’ positions correctly on the triad
tasks previously reported, and all children correctly represented numbers with
base-ten blocks in solving a two-digit addition or subtraction word problem. In con-
trast, on the item combining these tasks in the Miura et al. (1993) study, only 33%
of their U.S. children were correct. The East Asian children averaged 84% correct
on this task. 

Third, the noncanonical task was given to our children using their familiar ten-
sticks and dots rather than the base-ten blocks used by Miura et al. (1993). Our chil-
dren had not seen items like this before. Therefore, it is a test of their abilities to
use their conceptions of the ten-sticks in a new situation, but it is not strictly com-
parable to the data from the other groups. When asked to write how much 3 ten-
sticks and 12 dots were, 82% of our Spanish-speaking children and 55% of our
English-speaking children correctly said 42. This compares with 25% of Miura et
al.’s U.S. children and 52% of their East Asian children answering correctly with
base-ten blocks. More (by a ratio of 3 to 1) of our Spanish-speaking class demon-
strated a sequence-tens-and-ones conception than a separate-tens-and-ones conception
(i.e., they counted by tens [10, 20, 30, 31,…, 42] rather than counting the tens [1,
2, 3 tens and 1, 2,…, 12 ones is thirty and twelve is 42]), and more (by a ratio of
6 to 1) of our English-speaking class did the reverse. 

Two-digit addition and subtraction with regrouping. On the two-digit addition
problem (48 + 36) using ten-sticks and dots, 90% of our children’s solutions were
correct. The children who solved the problem correctly and one additional child explained
that they were making another ten and indicated their enclosed dots as doing this.
Most of the Spanish-speaking class found the total by sequence-tens-and-ones count-
ing rather than by counting the tens (a ratio of 11 to 1), and more of the English-
speaking class found the total by separate tens-and-ones-counting than by sequence
counting (a ratio of 4 to 1). Our 90% correct compares quite favorably with the per-
centage of first graders who become able to solve such problems without explicit
classroom opportunities to do so: 35% for conceptually instructed children and 25%
for traditionally instructed children (Hiebert & Wearne, 1992). 

On the two-digit subtraction problem using ten-sticks and dots, all the children
in the English-speaking class correctly opened a ten-stick by drawing 10 enclosed



759Karen C. Fuson, Steven T. Smith, and Ana Maria Lo Cicero

dots and correctly took away the required ten-sticks and dots. Of these, 70% then
wrote the correct answer. The errors were typical of those made during class and
discussed earlier; none of them reflected the concatenated single-digit conception
of numbers resulting in the typical errors made by U.S. children. Subtraction
problems with trading are not usually taught in first grade, and they seem much more
difficult for children to solve if they do not have an opportunity to do so in the class-
room. For example, in the Hiebert and Wearne (1992) study, only 6% of the con-
ceptually instructed first graders could solve such problems, and none of the
traditionally instructed children did so.

The Spanish-speaking first graders had not had opportunities in class to solve sub-
traction problems requiring trading. On a numeral problem given with base-ten blocks
that had units marked on the ten-bars, all children made the number as tens and ones
and took away the tens. All but one child took away ones from a ten-bar, and 88%
of the answers were correct. 

The word-problem tasks with base-ten blocks were given to assess whether the
ten-structured conceptions built by our children would generalize to these unfamiliar
tools. On the addition problem, 100% of the Spanish-speaking children were cor-
rect, and 90% added by sequence-tens counting the total. Of the English-speaking
children, 75% were correct; 84% of these traded ten units to make another ten bar,
and most of these counted the tens and ones separately. 

On the subtraction problem, all children showed correct digit correspondence by
making 74 with 7 ten-bars and 4 units and trying to take away 3 ten-bars and 8 units.
All but two children had a correct strategy for solving this problem and did see the
ten-bars both as 1 ten (when making the 74) and as 10 ones (when taking away some
or all of the 8 ones from it). Half carried out their strategy correctly, and the rest
made some error in executing their strategy. 

We are not aware of comparable data to assess the relative competence of our chil-
dren on these word-problem tasks. The two data sets we know of gave first graders
only paper and pencil and no concrete materials. Stigler, Lee, and Stevenson
(1990) reported that Japanese, Taiwanese, and U.S. first graders were 29%, 25%,
and 13% correct, respectively, on a word problem for adding 26 + 19. Hiebert and
Wearne (1992) reported that 35% of their conceptually instructed first graders and
25% of the traditionally instructed first graders were correct on an addition word
problem with trades. With base-ten blocks, our proportion correct was 89% on a
word problem of that type. This is similar to the 90% correct on the numerical two-
digit addition problem for our children using ten-sticks and dots drawings. Our chil-
dren could have used ten-sticks and dots in the Stigler et al. task, so these drawings
are a powerful tool that puts more difficult problems within the reach of first graders.

DISCUSSION

It did prove to be possible to support most children’s construction of most ele-
ments of the conceptual structures in Figure 2 using ten-stick and dot quantity draw-
ings. Furthermore, on a range of unfamiliar tasks, many children showed a robust
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preference for ten-structured conceptions, performing like children in China,
Japan, and Korea rather than like age-mates in the United States or like children in
higher grades in the United States. Most children were also able to carry out a ten-
structured solution to two-digit addition and subtraction problems and to explain
their regrouping. This is considerably above what first graders in the United States
ordinarily have an opportunity to learn because such problems with trades are usu-
ally not included in first-grade textbooks or are in the final chapter, which many
teachers do not reach (Fuson, 1992; Fuson et al., 1988). Performance was consid-
erably above that reported for U.S. children receiving traditional and reform
instruction and was above that reported for Japanese and Taiwanese first graders
on some tasks. This superiority is partly because the children’s conceptual tool, the
ten-sticks and dots, could be drawn on paper and thus could be used on homework
or in an assessment whenever pencil and paper were available.

Some reform approaches to primary mathematics have been successful in
enabling many children to invent accurate and understood methods of two-digit addi-
tion and subtraction. But some children in these projects continue to use unitary meth-
ods into second, third, and even fourth grade (Cognitively Guided Instruction: Steinberg,
Carpenter, & Fennema, 1994; Everyday Mathematics: Drueck, 1996; Purdue
Problem Centered Project: Cobb, 1995; Lo, Wheatley, & Smith, 1994). Our
teacher-orchestrated activities to help children construct sequence-tens and sepa-
rate-tens conceptions and then to use one or the other in two-digit addition or sub-
traction were quite successful: No first grader used a unitary method. This suggests
that it might be very helpful for teachers to carry out such activities with whatever
quantity conceptual supports are used in their classrooms or to add ten-sticks and
dots activities as recordings of any quantities that are used.

The children in the Spanish-speaking class showed in several tasks a preference
for counting by sequence-tens rather than counting by separate-tens. This prefer-
ence facilitated their solutions with the unfamiliar media of noncanonical sticks and
dots and of the base-ten blocks because they did not have to make another ten explic-
itly: counting by tens and then counting the ones took them up over the next
decade to get the answer. In contrast, more children in the English-speaking class
demonstrated separate-tens-and-ones conceptions in which they explicitly had to
make another ten by grouping or by adding or they had to break a ten. In some new
situations, fewer of them were able to do this accurately.

Although the sequence-tens-and-ones conception affords the easier solutions not
requiring making another ten, it is not clear that this conception is more powerful
or that it will remain more powerful for three-digit and four-digit addition and sub-
traction. Sequence counting becomes more difficult and burdensome with more places,
whereas separate-tens-and-ones solution methods generalize easily to more places
and carry little additional memory load while the child is carrying out such a solu-
tion (see Fuson, 1990, for a review of this evidence). Furthermore, some of the dif-
ficulties of the English-speaking children might have been eased if more focus had
been placed on these issues in class. Some children were still struggling with the
left and right locations of the tens and the ones. This was complicated by the fact
that some counted and wrote the ones first and then tended to write the tens on the
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right, following the left-to-right reading and writing order. Use of the T-frame labeled
with tens and ones, as in the Spanish-speaking class, or use of the decade and ones
supports from that class (e.g., showing the “invisible” zero under the ones digit) might
have helped these children. Giving experiences with noncanonical tens and ones
quantities (i.e., > 9 ones) in ten-sticks and dots or other forms would also be help-
ful. Such experiences would enable children to understand that their interpretations
of their written 312 as 3 tens and 12 ones is not necessarily shared by everyone; chil-
dren could then decide how such quantities need to be written so that anyone could
interpret them accurately. Fuson et al. (1992) reported such an extended discussion
by second graders using base-ten blocks. This kind of understanding may have been
facilitated for the Spanish-speaking class by their work with three-digit numbers. 

The difference between the two classes in preferred conceptions illustrates how
instructional emphases in the uses of a conceptual tool and the uses of different
tools can support different conceptual constructions. The research teacher for the
English-speaking class was focusing on the initial development of activities to
support separate-tens-and-ones conceptions, and consequently the activities to
support sequence-tens learning fell into the background. The research teacher
for the Spanish-speaking class used the separate tens-and-ones activities but also
initiated many sequence-tens activities. To help children construct all the con-
ceptions, teachers must create a balance of supports and of activities that stim-
ulate each conception.

It is possible that the Spanish words for 16 through 19 facilitate, at least somewhat,
the Spanish-speaking children’s comprehension of these quantities as “a ten and some
ones.” We have no data directly concerning this issue except for one incident that
occurred in the final interview with a Spanish-speaking child. This incident indicates
both that the words themselves are not sufficient for this understanding (they are only
potentially meaningful referrers) and that they can facilitate this view (they are poten-
tially meaningful referrers). On the Kamii task, one child who had said that the 1 in
16 meant one chip, suddenly, at the end of the interview, brightened with the clas-
sic lightbulb facial expression and said, “Diez y seis [the sequence word for 16] es
un diez y seis unos.” She demonstrated this with the chips by showing 10 chips and
then 6 chips. Thus, she restated the meaning of the sequence word diez y seis (ten
and six) as the tens-and-ones words used in class, un diez y seis unos (one ten and
six ones), to express the quantity of the written numeral 16.

We have no definitive data on the conceptual effects of the use of tens-and-ones
words because it is difficult to tease apart the various ten-structured supports we
used. The tens-and-ones words were easier to learn than the standard English and
Spanish number words to 100; therefore, children could participate in classroom
activities while still learning the standard number words. This seemed important
in the classroom. The tens-and-ones words also facilitated clear classroom discourse
about the quantitative meaning of the written numerals, as in the foregoing inter-
view incident. They may also have facilitated turning the children’s attention
toward quantities as tens and ones and therefore facilitated children’s construction
of ten-structured quantities. The tens-and-ones words were crucial in explaining mul-
tidigit solution methods, and they served as a powerful semantic critic that often
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enabled children to correct an error (e.g., “Are those tens?”). Because the tens-and-
ones words were less familiar than the English and Spanish words, the research and
classroom teachers sometimes forgot to use tens-and-ones words in new con-
texts. However, the goal to use them did serve many times to remind these teach-
ers to facilitate explicit discourse about tens and ones.

We are not claiming that most children had complete, flexible, and generalizable
understanding and use of all the relations in Figure 2. Various limitations and dif-
ficulties with particular relations were exhibited on the tasks. In particular, children
could demonstrate a given relation while not necessarily being able to use, or know-
ing to use, that relation in a more complex task or in an unfamiliar situation. The
ten-sticks-and-dots representation did allow children to carry out various sequence-
tens or separate-tens count-all or count-on methods for addition and take-away-and-
count-the-rest ten-structured methods for subtraction. For many, the construction
of numeral and mental two-digit methods remained a major task for second grade.
But the children did have a robust start, and they were advanced for their grade. 

Several kinds of data indicate that most children were treating the ten-sticks and
dots as quantities of tens and ones to be put together or taken away: They used dif-
ferent methods. Their drawings of quantities with ten-sticks and dots looked dif-
ferent. They enclosed or opened quantities to make a ten differently, and they made
recordings to denote making another ten in different ways. All children explained
what their enclosing in addition or opening in subtraction meant. They were not learn-
ing a traditional algorithm with numerals disconnected from quantities or rote meth-
ods of using the drawn quantities. The ten-sticks and dots were conceptual tools children
used for solving problems. They were flexible tools that could be used in different
ways by different children.

Teaching as assisting children to construct personal meanings for the conceptual
tools used in the classroom included orchestrating whole-class conceptual and
practice activities; leading reflective activities for individuals, small groups, and the
whole class; providing direct assistance to individual children; and organizing
additional help by peers and adults within and outside class for those who needed
it. In the multidigit domain, the conceptual web is very complex. Children begin with
different initial knowledge and proceed with different learning rates and different
opportunities to learn (because of variations in school attendance and learning
support at home). Therefore, we expected many children to make partial errors or
omissions that with feedback and support for the necessary learning would gradu-
ally come to be corrected as the children had opportunities to construct more ade-
quate understandings. This is what we observed in the classroom and in the tutoring
of children in the English-speaking class. Hiebert and Wearne (1996) also reported
finding many different individual learning paths in place value and multidigit addi-
tion and subtraction understanding rather than a simple linear progression through
which a teacher might try to help all children.

We want to emphasize how complex this teaching-learning task is. In Vygotskiian
terms (1934/1962, 1978, 1934/1986), the learning zones (zones of proximal devel-
opment) and individual constructive paths of children in our classes varied so much
that it is difficult for a teacher to meet all the needs for assistance at the same time.
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It is impossible to do it alone or all in the same way. In our view, the teacher must
organize the required assistance from classmates, from the family at home, and from
available adults in the school (teacher’s aides, parent volunteers) as well as from
the teacher. In the simpler domain of single-digit addition and subtraction, children
enter school with more knowledge, and the constructive tasks are much simpler and
require less new social-cultural semiotic understanding. The need for teacher
assistance is consequently much less. However, even in the single-digit domain, some
children still require assistance initially (if they enter lacking requisite knowledge,
as did some of our children), and some require assistance to move on to more advanced
methods. More learning assistance is required as the mathematical domain increases
in complexity; as more social-cultural semiotic knowledge is required; and as fea-
tures of this knowledge suggest incorrect meanings, such as two-digit numerals for
the decade conception (e.g., the common fifty-three as 503 error).

It is important for such assistance to begin with finding out where the child is and
then to help the child with his or her method. Yackel (1995) pointed out confusions
that can result when a teacher attempts to impose a specific method on a child, and
Cobb (1995) illustrated some similar difficulties when peers focus heavily on
their own methods. We have found that the peer assistance that naturally exists in
classrooms frequently consists initially of telling the answer or “doing-for,” using
the “helping” child’s own method. However, if the teacher emphasizes that help-
ing means to help another do it his or her way and monitors and supports effective
helping, at least some first graders can learn to assist peers quite effectively (e.g.,
Fuson & Smith, 1995; Fuson & Smith, 1997).

The power of the individual tutoring sessions highlights several important points.
At least a third of the English-speaking class seemed unable, in the whole-class sit-
uation with all of its distracting perceptual pulls, to concentrate in a sufficiently sus-
tained manner to make important connections and to compose various pieces of knowledge
into coherent and accurate action plans. Individual tutoring sessions with an adult
readily revealed any missing or weak elements. And, somewhat surprising to us, these
could be learned fairly quickly and used consistently within the complex whole in
which they were embedded if the teacher just supported attention to these elements
and led the construction of the required relations. Children varied in the elements they
were missing, so this tutoring needed to be individual for assessment reasons as well
as for attentional and affective reasons. Our experience suggests that it is the atten-
tional demands for making requisite relations among multiple aspects (words, writ-
ten numerals, and quantities) and for switching between two kinds of entities (tens
and ones) within these aspects that put these mathematical topics out of the reach
of some to many first graders in the busy perceptual environment of the classroom.
However, these concepts are accessible in one-to-one tutoring sessions. For the lower
third of the class, a stronger emphasis in the classroom on the inner triad of tens and
ones, in which the patterns are simplest and few irregularities exist, might serve as
a centering force and allow children to build up the other triads, with all their
irregularities, linked to this central core.

An alternative approach is to work heavily on improving the attentional capabilities
of children. The classroom teacher of the Spanish-speaking class did so in various
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ways (Lo Cicero & Cora, 1996), and more children consistently attended well to
discussions in that classroom than in the English-speaking classroom. Assistance
in the Spanish-speaking classroom was also frequently given at the chalkboard by
other children in a general classroom culture of helping.

The results reported here clearly indicate that all U.S. children can do enormously
better than they ordinarily do in primary school mathematics. Furthermore, the widely
reported gap in performance and understanding between East Asian children and
children in the United States can be narrowed or eliminated, even in poor inner-city
schools. Doing so requires a substantially more ambitious first-grade curriculum
and active teaching that supports the children’s construction of a web of multiunit
conceptions in which number words and written number marks (numerals) are related
to ten-structured quantities. Drawn quantities, instead of objects, can serve as
meaningful ten-structured quantities that support reflection, communication, assis-
tance, and teacher assessment of children’s thinking.
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