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Relationships Between
Counting and Cardinality
From Age 2 to Age 8

Karen C. Fuson
Northwestern University

Young children begin to understand and to use number words in seven different
kinds of contexts (see Fig. 6.1). Three of these contexts are mathematical ones: a
cardinal context, in which the number word refers to a whole set of entities (a
discrete quantity) and describes the manyness of the set (“1 want two cookies™);
an ordinal context, in which the number word refers to one entity within an
ordered set of entities and describes the relative position of that entity (“I was
second™); and a measure context, in which the number word refers to a continu-
ous quantity and describes the manyness of the units that cover (or fill) the
quantity (“I am two years old,” perhaps with two fingers showing, making it
also a cardinal context). Two other contexts, sequence and counting, provide
cultural tools for ascertaining the correct number word to be used in cardinal,
ordinal, or measure contexts. The sequence context is a recitation context in
which number words are said in their correct order but no entities are present,
and the number words refer to nothing; this context is originally like reciting the
alphabet or the days of the week. In the counting context, number words are put
into a one-to-one correspondence with entities; each number word refers (o a
single entity but describes nothing about it (it is just a count label, or tag, for the
entity). Number words are also used to say written numerals. This symbolic
context (or perhaps better, a numeral context) originally elicits a number word
with no accompanying meaning and no reference beyond the numeral itself
(“That’s a six” upon seeing 6). Later on, written numerals themselves can take
on cardinal, ordinal, measure, counting, or sequence meanings. Finally, number
words are also used in non-numerical {or at least quasi-numerical} contexts, such
as telephone numbers, television channels, zip codes, house addresses, and bus
numbers.
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6. COUNTING AND CARDINALITY 129

Young children hear number words being used in these seven different con-
texts and begin to use number words themselves in these various different con-
texts. These meanings are originally separate meanings for children. Gradually a
child begins to make connections among these various meanings and a single
spoken number word then may take on more than one meaning simultaneously.
Learning all of these relationships takes a long time, from age 2 to about age 8
for most children. This chapter summarizes the developmental relationships that
children construct among these various meanings. This construction culminates,
finally, in a seriated, embedded, unitized, cardinalized sequence of number
words, a postconservation construction related to what Piaget called “truly nu-
merical counting.” The evidence supporting the developmental paths to be de-
scribed here is discussed in my book, Children’s Counting and Concepts of
Number (Fuson, 1988), where work of other researchers working with children
from the United States and England is also discussed; parts of this chapter reflect
thinking that has progressed since the book was completed. Major elements of
the construction of relationships among all of these different meanings of number
words seem to be shared by children in most cultures. For example, the main
developmental path to the understanding of addition and subtraction followed by
most children in the United States is shared by children in the Soviet Union
(Davydov & Andronov, 1981) and Oksapmin children in New Guinea (Saxe,
1982). There also seems to be another related path taken by some children in
Sweden and by children in Asian countries; this alternative path and differences
between that path and the path described here are discussed by Fuson and Kwon
(this volume, chap. 15). The path to be described here is not supported by
teachers in classrooms in the United States-—in fact, many teachers have tradi-
tionally tried to suppress this path while offering nothing but memorizing facts to
replace it—but the evidence is quite robust that many children in the United
States independently construct this path for themselves as a way to give meaning
to numerical situations.

This book is a celebration of Piaget’s book on children’s construction of
pumber. This chapter and the work it summarizes are framed within that Piaget-
ian work on number. It assumes that each child must construct his or her own
path through increasingly complex number concepts, and the Piagetian stages of
conservation of numerical equivalence describe some of these increasing com-
plexities. My own work has concentrated on understanding how children come to
understand numerical situations with numbers that are too large to process per-
ceptually, that is, numbers greater than six. This has led to a concentration on the
cultural tool of counting because counting is used by children in constructing
cardinal, ordinal, and measure number concepts for all but very small and very
large sets. Thus, much of my work has focused on contexts of specified numer-
osities rather than the contexts of unspecified numerosities studied by Piaget. My
work, and the telated work of others, has attempted to fill gaps in the Piagetian
Jogical account of the construction of number. It has pointed out various critical




130 FUSON

roles that counting plays in children’s developing understanding of number, and
shown that the Piagetian framework underestimated the importance of these roles
of counting. Piaget’s account also underestimated the role that the empirical
strategy of matching can play, in spite of Piaget’s emphasis on one-to-one corre-
spondence, but relatively little research has been done on matching as opposed to
counting. However, my work and that of others does support the general Piaget-
ian position that counting alone is not sufficient for an adequate understanding of
number and that, in transformed situations, operational thinking moves beyond
counting and matching. Thus, we now have a richer and more complete view of
the complementary roles of the cultural tools of counting and matching and of
general operational, quantitative thinking.

In order to understand young children’s thinking about numerical situations, it
is important to clarify some common errors in the use of the word ordinal. This
word is used to refer to three different meanings of number words: sequence
meanings, count meanings, and ordinal number meanings. An ordinal number
refers to a context in which the entities are ordered (such as in a queue), and the
number refers to the relative position of that entity. Many langnages signify this
special numerical context by using entirely different number words or by adding
special letters to the usual counting words (in English the counting words are
one, two, three, four, five, . . . , whereas the ordinal words are first, second,
third, fourth, fifth, . . ., with most later ordinal words made from counting .
words by adding th). The very fact that two different lists of words are used
clearly indicates that the culture differentiates between counting contexis (in
which counting words are used) and ordinal contexts (in which ordinal words are
used). Another difference between count and ordinal contexts is that an ordinal
context has one given, unchangeable order. In counting contexts, one must
impose an order on the entities to count them, but one can make many different
orders on those entities and count a set in many different ways. Thus, in a
counting context, an entity can take any given count word, whereas in an ordinal
context a given entity can take only its single correct ordinal word, according to
the given ordering. A sequence context—saying the number words in their
standard order—is also sometimes called an ordinal context because number
words in every language have a single correct order. This order does create
sequence meanings for pumber words, and certain relationships derive from this
single correct order, but these sequence meanings are like the meanings that
accrue to any ordered list—the alphabet or the months of the year——and are not
originally guantitative. The word ordinal is also used erroncously to refer to
order relations (greater than, less than) on cardinal numbers (seven is more than
four). Order relations (>, <) can be established on cardinal, ordinal, or measure
numbers or number situations and on sequence words (seven comes after four). It
is considerably easier to understand and describe the task of the child in con-
structing a developmental path of numerical concepts if these three meanings—
ordinal, count, and sequence—are differentiated clearly and used accurately and
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i order relations are labelled as such and the type of number word meaning used
in the order relation is specified.

There is relatively little work on measure and ordinal number contexis. Walter
Secada and 1 did some unreported work on conservation of ordinal number in
which toy animals were lined up in a queue to go into cages and one queue was
then transformed to be longer or shorter than the other. We found that children
who were at Stage 2 of conservation of cardinal number (the traditional Piagetian
conservation of numerical equivalence task) had great difficulty with this ordinal
task, partly because they did not know the ordinal words, but many also had
difficulty when ordinal words were not used. In children in the United States
knowledge of the ordinal words lags behind knowledge of the counting words by
years (Beilin, 1975), so much ordinal number knowledge seems to lag behind
cardinal knowledge. Understanding of measure contexts aiso lags considerably
behind knowledge of cardinal contexts because measure contexts require under-
standing the unit of measure (and the inverse relationship between the size of the
unit and the measure number of the quantity), whereas much understanding of
cardinal contexts can be accomplished by a child who uses only perceptual unit
items in which each entity in the cardinal context is taken as an equal, single
entity (see Steffe et al., 1983). Because most cardinal relatiopships are con-
structed before ordinal and measure relationships are constructed, 1 concentrate
in this chapter on the relationships constructed by children among sequence,
counting, and cardinal meanings of number words,

EARLY CONSTRUCTIONS: PATTERN NUMBER
WORDS AND COUNTED NUMBER WORDS

Young children’s first cardinal uses of number words refer to small numbers of
entities and seem to rest on subitizing, the immediate apprehension of small
numerosities. There is controversy concerning the basis for subitizing; the ages at
which children can subitize two, three, and four entities; and the developmental
relationship between subitizing and counting. What is clear is that young chil-
dren do learn to subitize at least two entities and that many children learn to label
particular patterns or situations with a cardinal label (e.g., “There are five people
in my family.”). Children continue to use this pattern-based approach of seeing
certain situations as patterned sums of small pumbers of entities {e.g., After I cut
a peanut butter sandwich in half, and in half again, to make four small squares,
my daughter aged 2 years, 10 months said, “Two and two make four.”). These
special pattern-based small numerosities continue for several yeats to play impor-
tant roles in some equivalence, addition, and subtraction situations.

Before children can count entities, they must learn the cormrect sequence of
number words. Errors made in learning this sequence seem to depend on the
structure of the sequence. In English the irregularities in the number words after
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ten—eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen,
nineteen, twenty—seem to hide even the irregular relationship of the -teen words
to the words before ren; thus, most children leamn the sequence of words to
twenty as a rote list of meaningless words, much like the alphabet. The incorrect
sequences produced by 3- and 4-year-olds in the United States possess a typical
structure (see Fuson et al., 1982): They consist of a first portion of number words
in their correct order, followed by a stable portion that is not correct, followed by
an unstable portion that varies each time number words are said. The stable
incorrect portion usually consists of words in the correct sequence but with some
omitted (e.g., “11, 12, 13, 167 or “13, 14, 16, 187); reversais of word order are
uncommon. These incorrect stable portions may be said by a given child for
several months or even longer.

Most middle-class children in the United States below the age of 3%% are just
learning the sequence to 10, those between 3% and 4Y2 have correct sequences to
10 but have incorrect portions somewhere between ten and twenty, and many
between 4% and 6 are working on the decade structure between twenty and one
hundred, although a substantial proportion of children in this age range may still
have incorrect portions in the upper teens (see Fuson, Richards, & Briars, 1982).
As soon as children’s accurate portions reach into the 20s, their sequences show
evidence of understanding of the decade structure of the English words (the x-ty,
x-ty—one, X-ty—two, . . . , x-ty—nine pattern}, but it takes them a very long time
to learn the decade words themselves (twenty, thirty, forty, . . ., ninety) in their
correct order. They produce a series of x-1y to x-ty—nine chunks that may be out
of order, and may even repeat chunks for as long as a year and a half.

Two-year-olds often begin to count objects. They typically point to objects
and say number words. Counting entities distributed in space (as opposed to
counting entities occurring over tire, such as clock chimes) requires an indicat-
ing act, such as pointing, to connect the words said over time to the entities
distributed in space. Pointing (and other indicating acts, such as moving objects
into a counted pile or eye fixation on particular entities) isolates a particular
spatial location at a particular moment of time. !t thus creates spatial—time units
that enable a one-to-one correspondence in time to be made between the points
and the spoken number words, and a one-to-one correspondence in space to be
made between the point locations and the entities. If each of these correspon-
dences is correct, the counting is accurate. Preschool children make errors that
violate each of these correspondences in both possible ways: They make a point
without saying a word and say a word without making a point; they give extra
points to an object and leave some objects without any points. They also occa-
sionally produce complex combinations that violate both correspondences {e.g.,
give an object three words and two points) and produce degenerative pointing (a
skimming across the objects with the finger while saying words at random).

The rates at which 3-, 4-, and 5-year-olds make these errors, and how object




6. COUNTING AND CARDINALITY 133

characteristics of number, color, homogeneity, and arrangement affect error rates
is discussed in several chapters in Fuson (1988). Preschoolers show surprising
competence in creating correct correspondences in counting objects arranged in
rows, with children aged 3 to 3%z, 3% to 4, and 4 to 412 making correct
correspondences on 84%, 94%, and 97% of the ohjects, respectively, in rows of
4 to 14 objects. The error rate increases with longer rows, falling to 56%, 64%,
and 71% of the objects correct, respectively, in rows up to 32 objects. Counting
accuracy also varies considerably with how hard the child is trying to count
accurately (i.e., with effort). When objects are maximally disorganized, children
pot only have to carry out the local time—space number word—point—object
correspondences, but must also create a global correspondence over all the
objects, so that each object is counted and no object is re-counted. This requires
the child to use either a remembering strategy, to keep track of which objects
have been counted, or a physical strategy, such as moving objects into an already
counted pile, so that remembering is not necessary. Young children are much fess
successful at creating such a global correspondence than they are at carrying out
the local correspondences in a linear set of objects, and 5-year-olds still make
many re-count or uncounted-object errors on large. disorganized arrangements
having 10 to 30 objects.

When young children first begin counting, the counting does not have a
cardinal result. They count only to imitate the social-cultural counting activity. If
asked how many there are after counting, children re-count {(and continue to re-
count each time they are asked “how many?"), they say a number word that is
not their last counting word, or they say a sequence of number words (often
different from the words they said in counting). It is not clear how children first
learn the relationship between counting and cardinality and about how much
understanding of cardinality is indicated even when children answer a “how
many?” question with the last word they said in counting. My own work (sum-
marized in Fuson, 1988, chap. 7) indicates that different children may use differ-
ent ways to make the connection between their last counted word and that word
as indicating how many objects there are. In most cases children then generalize
this relationship fairly rapidly and use this relationship across sets of different
sizes. Some children may count a very small set and also subitize that set, and
then notice that the last word said in counting is the same as the subitized
numerosity. Something may make the last counted word particularly salient to
the child, and that child may then answer a “how many?” question with that
word. Children may be told by a parent or sibling that their last counted word
tells how many objects there are, and this may be sufficient for them to start
responding correctly. Young children’s recency bias (their tendency to answer a
multiple-choice question with the Iast listed answer) may also contribute fo their
answering a “how many?” question with the last word they say. Failing to
remember their last counted word does not seem to be a major reason children
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fail to answer a “how many?” question with their last counted word: Most 2- and
3-year-old children who do not answer the “how many?” question correctly do
remember the word they said for the last object in a row.

Many children who do answer a “how many?” question with the last counted
word seem to have constructed only a last-word rule, in which that last word does
ot refer to the whole set and does not refer to the numerosity of that set.
Children give the last counted word even when their counting is very inaccurate
and yields a last-word response that is considerably discrepant from the cardinal
meaning of that response: for example, counting a set of 26 objects: “1, 2, 3, 6,
7, 8,9, 1,2.” “How many are there?” “Two,” or counting a set of two objects:
«“1, 2, 3. There are 3.”; or repeating a given number several times in counting,
but still giving it as the last-word response: counting a set of23:%1,2,3,4,5,6,
7. 8,9, 10, 11, 12, 16, 14, 15, 16, 14, 16, 15, 15, 16, 11-teen, 15.” “How
many are there?” “15.” Many 3-year-olds giving last-word responses neverthe-
less show confusion between counting and cardinality meanings, and they use
cardinal plural forms to refer to the last object, that is, as a count reference,
rather than as a cardinal reference to all the objects. Three examples reported in
Fuson (1988) are “Those are the five soldiers” as the child points to the Jast
soldier; “This one’s the five chips” as the child points to the last chip; and “This
is the four chips™ as the child points to the last chip. Other recent evidence, using
a trick game methodology to decrease overestimates and underestimates of chil-
dren’s knowledge (Frye et al., 1989), also indicated that some 3- and 4-year-olds
use a last-word rule rather than connecting counting to cardinality, because they
answered assertions of the interviewer, “I think there are x,” by agreeing only
with last-word responses even when the interviewer made a counting error and
the child noticed and identified the counting as incorrect.

Some children may immediately relate the counting meaning to a cardinality
meaning, and many 4-year-olds come {0 make such a count-to-cardinal transition
in word meaning, in which the word shifts from the count reference (a reference
to the last counted object) to a cardinality reference (a reference to the numer
osity of all of the counted objects). Such a transition requires the child to gather
conceptually all the counted entities so that the cardinality reference can be to all
of these entities. This conceptual gathering together is called cardinal integra-
tion, following a related use of infegration by Steffe et al. (1983). This count-to-
cardinal transition allows children to begin to understand numerical equivalence,
and to add and subtract in certain situations. (These are discussed in the follow-
ing sections.) The reverse cardinal-to-count transition in word meaning is re-
quired in order for a child to be able to count out a given number of objects.
When instructed, “Get five cars,” or “Give me five dolls,” the child must shift
from the cardinal meaning of the five to a counting meaning of five and know that
when counting, the counting must stop when five is said. The child must also be
able to remember the goal of counting (five) while carrying out the counting and
te monitor the counting in order to stop at the required word. It may take some
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time for children to be able to present their counting activity to themselves
sufficiently to anticipate this cardinal-to-count transition. Of 28 children, 2 and 3
years old who were last-word responders (children who gave the last counted
word in response to & how-many guestion), 22 did not show any cardinal-to-
count transitional ability on any trial. After being told that a row of objects had x
of those objects, they were not able to predict what number they would say when
they counted the last object in the row. These children did not even guess x; most
of them tried to count to find out what they would say last.

There is still controversy concerning the relationship between children’s
counting behavior and their understandings of counting. I have argued that this
relationship is more complex than a simple “skilis-first”™ or “understanding-
first™ approach (Fuson, 1988, Chapter 10) and discuss evidence concerning the
developmental relationships among the Gelman and Gallistel (1978) how-to-
count principles. There are many aspects of accurate counting, and children may
understand that some of these are required for correct counting before they are
able consistently to meet these requirements; they alse may carty out accurately
certain aspects of counting before they understand that these are required for the
counting to be correct. Relationships among a child’s saying an accurate se-
quence of number words, carrying out correct correspondences between number
words and objects, and knowing at least a last-word rule vary with the number of
objects. For small sets, most children do the first two before the third. For sets
between about 4 and 7, children produce correct sequences but may produce
correct correspondences and no last-word rule, or may use a lfast-word rule but
make incortect correspondences. For sets between about 7 and 16, these aspects
are ordered: sequence, last-word rule, then correct correspondences. For even
larger sets, children may use a last-word rule while producing neither correct
sequences nor correct correspondences. With respect to developing understand-
ings of relationships between counting and cardinality, certain aspects of these
relationships may be understood earlier for small sets than for large ones.

EQUIVALENCE AND ORDER RELATIONS ON
SPECIFIED AND UNSPECIFIED NUMEROSITIES

Between any two sets of entities (two unspecified numerosities) or between any
two specified numerosities, A and B, one of three possible cardinal relations will
be true: The sets or numerosities will be equivalent, A will be greater than B, or A
will be less than B. Table 6.1 outlines different relational situations that have
been studied. Piaget’s conservation of numerical equivalence situation stimulated
many studies of the second and especially of the third type of situation: under-
standing the effect of a transformation on the relationship between two sets of
entities. Various strategies for determining the relation between two unspecified
numerosities or two specified numerosities are outlined in the right-hand column




TABLE 6.1
Equivalence and Order Relations on Specified
and Unspecified Numerosities
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of Table 6. 1. Both the unspecified numerosity sirategies and the specified numer-
osity strategies can be used whenever objects are present, whether or not the
numetosities of those sets are initially specified. The basis for making the rela-
tional judgment is similar for all enspecified numerosity strategies: They depend
on identifying and locating any extra objects. The basis for making the relationat
judgment for the specified numerosity strategies is also similar: Knowledge
about the relations on the obtained specific number werds is required to deter-
mine the refation on the objects. The transformational strategies are only used in
situations where a transformation is made; in such situations, the unspecified and
specified numerosity strategies can also be used. Empirical strategies (matching
and counting) are, however, the only reliable strategies to use in the static
comparing situations, and in the Change-Add-To and Change-Take-From situa-
tions resulting in A? B in the table.

Young children learn important aspects of these comparison strategies before
they start school, and learning about these strategies continues in the early years
of school. There is a huge literature on children’s learning in this area, much of it
a reaction to Piaget’s original book on number (Piaget & Szeminska, 1941). In
spite of the many studies, however, our picture of how children’s understanding
develops in these different comparison situations is still unclear in several places.
A summary outline of this development is presented in Table 6.2. This summary
and the brief discussion that is possible here of course ignore many subtleties in
this learning. A much fuller discussion is available in Fuson (1988, chap. 8).

At least by age 3, children can use perceptual strategies for comparing two
sets, and they understand that adding things to a set means that the set has more
and that taking some away means that the set has less. The perceptual strategies,
including the use of length or density when objects are arranged in rows, con-
tinue to be very powerful during much of the preschool years. During this time
children will attend to a transformation on a set and ignore the relation that
existed on that and another set originally, but as children learn the cultural tools
of counting and matching, these tools become strategies that are increasingly
trusted and used in comparison situations. When children learn these tools, of
course, depends upon their own culture, so the age may vary widely. The ages
given in Table 6.2 primarily reflect research done with English-speaking children
in the United States and England.

Children can correctly carry out counting or matching and know how to use
the counting or matching information to make an equivalence judgment before
they will choose to carry out these strategies voluntarily. If asked to count or
match, although they can do so, they will choose to use perceptual sirategies
instead. In situations in which information obtained from perceptual strategies
conflicts with that obtained from the quantitative strategies of counting or match-
ing, children initially will use the information from perceptual strategies. In these
cases they may say things like, “This seven has more than that seven does,” thus
saying the specific numerosities obtained by counting but choosing to use the
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perceptual information of “more” (i.e., extra) in one row rather than using the
numerosity information that the last words are the same. Eventually, if children
are asked to count or match, they will use this counting or matching information
to make the equivalence judgment even though it contradicts the perceptual
information. They may do this first for equivalent sets and then later for unequal
sets, where they have to use an order relation on the cardinai numbers to decide
which has more. Finally, they will carry cut counting or matching voluntarily and
will use this information rather than the misleading perceptual information.
There are wide individual differences in when these changes are made, with a
few 3-year-olds and more 4-ycar-olds voluntarily counting or matching, and
some 5-year-olds still not accepting connt or match informaticn over perceptual
information when these conflict.

This conflict between perceptual and quantitative strategies occurs in all of the
comparing situations outlined in Table 6.1, and the same developmental path
through this conflict seems to occur in static and transformation situations. The
urge toward counting is so strong in many 5- and 6-year-olds that they try to
count even when objects are hidden. I once did a Bruner version of the Piagetian
conservation of pumerical equivalence task in which one set was hidden while
the transformation was made and the set was kept hidden afterwards, but many
children still tried to count the hidden objects. The eventual strength of the
counting strategy, especially, has been partially obscured by the many Piagetian
conservation studies in the United States in which children have been prevented
from counting. Sufficient evidence has accumulated concerning counting, and
also concerning young children’s competence in matching (see Fuson, 1988;
Kwon, 1989), to indicate that the developmental sequence of conflict between
perceptual and quantitative strategies summarized in Table 6.2 is fairly robust.

The original Piagetian account of transformation situations, although under-
emphasizing the roles of counting—and perhaps matching—in dethroning the
perceptual strategies, is accurate, in that children do not stop their thinking about
these situations even when they can carry out counting or matching accurately.
Something seems to impel them on to understand the nature of the transformation
itself. Thus, initially children may have to count or match when faced with a
transformed situation (and may even use perceptual strategies if prevented from
counting or matching); because they must obtain the equivalence information
empirically by counting or matching, they are, of course, mot conservers.
Eventually these children do not count or match when faced with a displaced set:
They know that displacement does not affect the original quantity and thus does
not affect the original equivalence or nonequivalence relation. This knowledge
may be constructed by making an inductive inference from past experiences of
counting or matching sets (and be justified by statements that the transformation
does not change the quantity or that nothing was added or subtracted); or it may
be a deductive inference based either on conceptual knowledge that enables the
objects to be transferred mentally to the pre-transformation state and tracked
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during this reversal (and justified by statements about reversibility) or on knowl-
edge that enables the child to consider length and density simultaneously {and
justified by statements about compensation of length and density). Counting ot
matching may play a role in these inductive or deductive inferences. In Fuson,
Secada, and Hall {1983) children spontaneously counted or matched and also
gave one of the Piagetian justifications on the very same trial. Sometimes the
counting or matching occurred tirst and the justification seemed to be an attempt
to explain the empirical result, and sometimes the justification was given first
and then the child counted or matched as if not certain that the explanation was
really correct. At present adequate data do not really exist to address the hypothe-
sized developments at ages 6 and 7 that are given in the transformation columns
in Table 6.2. We need research in which children are allowed to count or match if
they want but are also asked to explain their answer. Studies also need to report
the different justifications separately to ascertain if there is any developmental
order in them, and children’s understanding of all of the justifications needs to be
ascertained rather than having questioning stop with the child’s first choice of a
Justification.

ADDITION AND SUBTRACTION

We know at this time very little about relationships between the conceptual
structures children construct and use for addition and subtraction and those they
construct for equivalence and order relations, but addition and subtraction and
equivalence and order relational situations are clearly related. The Change-Add-
To and Change-Take-From transformations of a single set are two very funda-
mental addition and subtraction situations. When these transformations are car-
ried out on one set in an original relation to another set, a Compare situation (a
standard subtraction situation) is related to a second Compare situation; such
situations are integer addition and subtraction situations (see, for example, Verg-
naud, 1982). Thus, the mathematical situations first studied by Piaget form a rich
complex of mathematical situations whose comprehension by children we still
only partially understand.

The initial relationships children comstruct among sequence, counting, and
cardinal meanings of number words have already been discussed. Children con-
tinue to construct increasingly complex relationships among these meanings that
enable them to solve addition and subtraction situations in increasingly sophisti-
cated and efficient ways. In the United States children move through a develop-
mental sequence of such constructions that in most cases are little affected by
classroom instruction and frequently are even carried out in the face of active
opposition by teachers who may forbid counting or the use of fingers in the
classroom, The relationships that are established change the very nature of the
sequence of number words: The sequence moves from being a rote, meaningless
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series of utterances to being constituted by number words that come to stand for
objects in the counting procedure and that can take on cardinal meaning as the
sum of the words earlier in the sequence. Varicus levels of meaning that the
number word sequence goes through are outlined in Table 6.3. The first four
lines in the table {through the Unbreakable List level) have already been dis-
cussed. Different parts of the sequence may be developing at different levels

TABLE 6.3
Devefopmental levels within the number-word sequence
Sequence Meanings Conceptual Structure Within the Sequence and
Level Related Relationships Among Different Number-Word Meanings
String Sequence onetwothreefourfivesixseven Words may nct be
differentiated.
Unhreak- Seguence one-two-three~four-five-six-seven- Words are different-
able List iated.
Sequence- one~two-three~four-five-six-seven Words are paired with
Count 2 2 @ e @ @ -3 objects.
Sequence- ane—two-three—four -five-six—severn—» [seven] Countirng cbjects has a
Count~ 8 ® @ @ e ® @ cardinal result.
Cardinal
Breakable [feaar} —5 four-Five-six-seven —»iseven] The addends are embedded
Chain Count-— ) within the sum count: the
Cardinal Q o & @ enedded First addend comt
is abbreviated via a card-
inal-to—count transition in
word l]ﬂal]]_l. .
Numerable Sequence- The sequence words become caxrd-—
Chain Count- inal entities; a correspondence
Cardinal ' is made between the embedded
second addend and sape other
presentaticn of the second addend.
Bidirectional Sequence— The sequence becomes a unitized
Chain/Truty Court— seriated embedded mmerical se-
Numsrical, Cardinal quence; both addends exist cut—
z side of and equivalent to the sum;
relationships between two differ—
Sequence ent addend/addend/sum structures
Coarrt— can be established; addends can

Co-@ed - @O-®

Enow sach number as all combinations.

@@@@@@@

hecause
6+ 6 =12

f e : .
Note: A rectangle drawn around related meanings indicates meanings that have become inte-
grated. A number word alone has a sequence or count meaning; a number word enclosed by a
bracket has a cardinal meamngf
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simultaneously: A child may start counting from given words less than ten while
still learning words just before twenty.

At the Breakable Chain level children become able to begin counting at any
point in the sequence. The sequence and counting meanings become merged
(signified by the rectangle around these meanings at this level), children become
able to consider objects that present an addend as also at the same time presenting
the sum (one addend becomes embedded within the sum count), and they can
move from the cardinal meaning of a given addend (“There are three cats™) to
the sequence/counting meaning of that addend as the last word said in counting
the objects for that addend without needing actually to count the objects or even
needing the objects to be visible. They then continue the count of the second
addend objects as at the earlier level and make a final count-to-cardinal transition
to find the total number of objects. The second addend objects must also be able
to be embedded within the sum objects if such children are to continue the count
from the first addend. In Secada, Fuson, and Hall (1983) we found many first
graders who initially did not embed the second addend within the sum and
answered that when counting all the objects they would count the first object in
the second addend as one or as five (or whatever the second addend actu-
ally was}.

At the next Numerable Chain level all three meanings—sequence, count, and
cardinal—are merged, and the sequence words themselves become the objects
that present the addends and the sum in addition and subtraction situations. No
objects are used to present either addend; the number words are said beginning
with the first addend word (or the addend taken by the child to be the first
addend) and as many words are then said as are in the second addend (for 6 + 8,
start with eight and say six more words: nine, ten, eleven, twelve, thirteen,
fourteen). When the second addend is very large, it is necessary to use some
method of keeping track of how many more words are said. Children do this by
matching the words said to some known set of entities (e.g., a pattern of six
fingers that are extended successively as each word is said or an auditory pattern
of speaking three words and then three more words) or by counting the words
said (nine is one, ten is two, eleven is three, . . ., fourteen is six”).

Finally, at the highest level the sequence is a unitized, seriated, embedded,
bidirectional, cardinalized sequence. There has been much less research about
this level than about the Jower levels, and the several conceptual structures
portrayed at this level in Table 6.3 may, in fact, occur at different times; that is,
this level may eventually be differentiated into different levels. At this level
children can construct relationships between two different addend-addend-sum
situations and can chunk addends into parts for more convenient adding or
subtracting. These various addition and subtraction strategies have been called
derived fact or thinking strategies in the research literature. They usually have
not been differentiated, and deciding their developmental sequence is compli-
cated (as is the research on the other sequence levels) by the fact that children can
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use pattern presentations of numbers to solve problems with small numbers
before they can do so in general (e.g., they can count on 1 or 2 before counting
on in general and may be able to move one object from addend to addend before
meoving two objects).

The actual counting that children do in addition and subtraction situations at
each level is pictured in Table 6.4. The first two columns show forward counting
procedures (one to find a sum and one to find a missing addend), and the second
two columns show backward counting procedures. The first and third column
procedures reverse each other, and the second and fourth column procedures
reverse each other. At the second and third levels, the counting for the first and
third columns is governed by the objects for the second addend (one counts
forward or backward the number of objects in the second addend), whereas the
counting for the second and fourth columus is governed by the auditory count (up
to the sum word for the second column and down to the known addend word for
the fourth column) and the number of words counted is then found. For most
children, counting down is considerably more diffﬁt than counting forward, so
there are more errors in the backward counﬁng procedures. The sequence—
counting—cardinal relationships are also somewhat more difficult to establish in
the backward procedures, introducing other kinds df errors. There are two differ-
ent backward procedures, and children somctimes"a‘ confuse them, ending with
one object too many or one object too few. The second counting down procedure
shown in Table 6.4 may be conceptually based (saying eight may mean “eight
and one taken away”), or it may be only a procedure not related to the underlying
addend structure (“1 say four words backwards, and the last word I say is the
answer”). There is also a discontinuity between the object counting procedures at
Level 1 for the backward procedures but not for the forward procedures, because
all of the object counting at Level 1 is forward counting.

The drawings in Table 6.4 show situations in which a problem is given in
number words or in written numerals and children then have to count out objects
to make the two known quantities. In textbooks and in research studies addition
and subtraction situations are also given with objects already presenting the
quantities; in such cases the earlier steps would be omitted. Objects are shown
for Level 1, but children frequently count out fingers as objects also. At Level 2,
children may initially count out objects for the second addend or they may use
fingers; this finger use may involve a known pattern of fingers that is made or
recognized rather than counted. At Level 3, fingers are not sets of objects that are
counted on or counted back as part of the sum, but instead constitute a keeping-
track procedure matched to the number words used to count on or count back the
sum. The number words themselves present the addends embedded within the
sum (i.e., they present the guantities of the addends and the sum), while
the fingers (or other keeping-track procedures) just match the number words and
then either stop the counting when the correct second addend finger pattern has
been produced (in the first and third columns) or present the second addend for
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the answer after the counting stops at the sum or the known first addend word
(the second and fourth columns). Finally, at Level 4, derived fact strategies are
carried out either by operating on the cardinalized sequence and moving through
the sequence in chupks or by moving unitized number words from addend to
addend within the sequence.

Between Levels 1 and 3, children make major advances with respect to both
addends. The counting of the first addend becomes abbreviated as children
embed the first addend within the sum and move from counting all to counting
on. Some kind of keeping-track process for the second addend enables children
to use sequence solution procedures instead of just counting objects. Because
different researchers using different tasks have reported on each of these kinds of
advances, we do not yet have definitive evidence concerning the developmental
relationships between these two advances. Therefore, Level 2 could be consid-
ered to have two sublevels, each reflecting an advance for one addend (see
Fuson, in press-a). Or both such sublevels could be viewed as transitional, and
only three major levels could be identified (Fuson, in press-b). The developmen-
tal progression outlined in Table 6.4 also 1s not the only possible progression.
The structure of the number—word sequence and the way in which fingers present
addition and subtraction both seem to affect the developmental sequence of
solution procedures used by children in a given culture. Other developmental
paths are discussed in Fuson and Kwon (this volume, chapter 15).

The addition and subtraction strategies described in Table 6.4 are not rote
procedures. They all require a considerable amount of conceptual understanding
(see Fuson, 1988, Chapter 8. for a discussion of the conceptual structures in-
volved). Counting at each level requires a conceptual operation of constructing
unit items for that level, moving from perceptual unit items at Level 1, in which
each object is taken as an identical countable object, to Level 2, where unit items
are simultaneously in an addend and in a sum, to Level 3, where the words are
considered by a child as the umnit items, to Level 4, where the unit items are even
more abstract and are able to be separated and combined outside of their addend
structure while also staying within it (see Steffe & Cobb, 1988, and Steffe et al.,
1983, for more discussion of various unit items children use in addition and
subtraction situations). Conceptual uniting operations, cardinal integrations, are
also required at each level in order to form the unit items into addends and into
the sum; the results of these cardinal integrations provide the reference for the
cardinal meaning of a number word. '

There is a considerable literature in English concerning a range of addition
and subtraction situations, particularly addition and subtraction word problems.
The main categories of such word problems (these are actually possible real-
world addition and subtraction situations) are shown in Fig. 6.2. Each situation
involves three quantities, any one of which can be unknown, yielding a large
pumber of kinds of addition and subtraction problems. The performance of
children in the United States on a range of these probleins has been summarized
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in several papers (e.g., Carpenier & Moser, 1983; Fuson, 1988, chapter 8; in
press-a, in press-b; Riley, Greeno, & Heller, 1983). Initially children directly
model the actions in the addition or subtraction situation, using the strategies
described in Table 6.4 that reflect the problem situation. For example, they add
on or count up for a Change-Add-To problem in which the change is unknown,
but they take away or count down for a Change-Take-From problem In which the
end quantity is unknown. At this direct modeling level some types of problems
cannot be solved by many children. Later, solution procedures may be more
freed from the given situation and are no longer direct models of the prob-
lem situation. For example, some children choose to solve all subtraction prob-
lems by counting up even for situations that fit the third or fourth columns in
Table 6.4.

The present mathematics curriculum in the United States {manifested chiefly
through textbooks, because there is no pational curriculom) mostly igneres how
children think about numerical situations (see Fuson, in press-b, for a review).
Children in the United States are provided with a very restricted sample of
addition and subtraction situations (Stigler, Fuson, Ham, & Kim, 1986) com-
pared to children in the Soviet Union, who solve problems from the whole range
of possibilities. The problems used in the United States are generaily only the
simplest kinds of problems, which many children can already solve when they
begin kindergarten. Textbooks in the United States initially present pictures of
objects to count for addition and subtraction problems, but suddenly expect
children to solve numeral problems without objects. Flashcards and drills are
used to help children memorize the facts, and counting may even be forbidden,
being viewed as immature and as interfering with later competence. In fact, we:
found that when children were given opportunities in the classroom to move
through the usual developmental sequence in Table 6.4 up to Level 3, counting
on for addition and counting up for subtraction, these counting procedures were
efficient and comprehensible enough to be used in multidigit addition and sub-
traction of up to 10 places if the children used one-handed finger pattems to keep
track with their nonwriting hand (Fuson, 1986a, 1986b; Fuson & Briars, 1990;
Fuson & Secada, 1986: Fuson & Willis, 1988). Learning to subtract by counting
ap did not interfere with children’s understanding of Change-Take-From situa-
tions and made subtraction as easy as addition, because the keeping-track process
used the sum rather than a known finger pattern to tell a child when to stop
counting. First graders of all ability levels learned these Level 3 procedures for
all sums and differences to 18 (i.e., through @ + 9 = 18 and 18 ~ 9 = 9), a
considetable acceleration of the usual expectations for children in the United -
States, who may not even he given the opportunity to add and subtract all sums to
18 in the first grade (Fuson et al., 1988). Children were quite accurate and fast at
such counting and easily used counting on and counting up to find addition and
subtraction combinations they did not know when adding and sebtracting multi-
digit numbers in second grade.
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There are a number of factors that complicate the effort to understand the
conceptual structures for addition and subtraction that are possessed by a given
child. Children solve a particular problem in a range of ways and may not use
their most advanced solution procedure. Subitizing or subitizing plus adding
enable children to carry out procedures with certain small numbers before they
can do so in general. Memorized facts enable certain problem types to be solved
that cannot be solved for unknown facts. Conceptual structures can be affected
by instruction and previous experiences. However, it is clear that children can
construct conceptual structures that enable them to understand and solve many
different kinds of addition and subtraction problems and that mathematics curric-
ula in the United States considerably underestimate the kinds of problems chil-
dren can successfully engage.

In first or second grade, children begin to construct multiunit conceptual
structures for multidigit numbers. In all of the conceptual structures and solution
procedures discussed so far, each number is a unitary collection of single unit
items. Larger numbers require children to construct multiunits of ten, hundred,
and thousand, from which these larger mumbers are composed. These multiunits

enable children to understand and use English nomber words and the standard -

base-ten written marks for four-digit numbers. Research concerning children’s
understanding of these larger numbers and of multidigit addition and subtraction
is summarized in Fuson (1990), and multiunit conceptual structures are discussed
there. Instructional issues concerning multiunit numbers are discussed in Fuson
(in press-b), and disadvantages of English words for multiunit numbers are
described in Fuson and Kwon (this volume, Chapter 13).

CONCLUSION

For several years young children need to present numerical situations to them-
selves in some concrete way using objects and, later, number words as objects.
The originally separate sequence, counting, and cardinal meanings of number
words become related and finally integrated over this period so that the number-
word sequence itself becomes the primary conceptual tool for solving addition
and subtraction sitwations. This sequence eventually becomes an embedded,
seriated, cardinalized, unitized, numerical sequence.




