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of Number Words and
Other Cultural Tools
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There are thousands of different systems of number words; on the island of Papua
New Guinea alone there are over 700 languages (Lancy, 1983; see also Ifrah
1981/1985; Menninger, 1958/1969; Zaslavsky, 1973). Many cultures, especially
those surrounding and within the Pacific Ocean, even have several different
number-word systems that are used for different purposes or for counting differ-
ent kinds of objects. The features of a system of number words affect how easily
it can be learned and used to add and subtract numbers less than 10, to add and
subtract numbers between 10 and 100, and to add and subtract numbers larger
than 100. This chapter will focus on some of the features that affect these
different aspects of numerical learning. The concentration will be on a com-
parison between European systems of number words, which are irregular up to
100 (with English used as the main example), and the Asian systems that are
based on Chinese, which are totally regular. Most of the points made also
generalize to a wide variety of other systems of number words, and examples
will be given where available. Nonlinguistic cultural supports for learning addi-
tion and subtraction, especially the different uses of fingers as countables, will
also be discussed.

Agian npumber-word systems that are based on Chinese and most European
number-word systems are named-value systems in which the values are suc-
cessive powers of 1G: there are words for the numbers 1 through 9, and larger
numbers are made by saying one of these number words followed by 2 power-of-
ten-value word that tells the value of the I through 9 word. One says 3353 in
English as five thousand three hundred fifty three, in French as cingmiilletrois-
centcinquantetrois, and in Chinese as five thousand three hundred five ten three
{using English words to show the values of the Chinese words; the actual Chinese

283




284 FUSON AND KWON

words are wu chien san bai wu shi san). Most European languages are irregular
(in many different ways) up to 100 but are regular named-value systems after
100, whereas Asian systems based on Chinese are regular named-value systems,
explicitly naming the ten beginning with 11 (ten one) and continuing to 100
(e.g., 16 is fen six, 24 is two ten four). Mandarin Chinese, Japanese, Korean, and
Burmese are totally regular named-value systems, and many other Asian fan-
guages have only minor irregularities in the second decade (words for 11 through
19) and in some decade words (e.g., Thai, Vietnamese, Bahasa used in Indo-
nesia, Tagalog used in the Phillippines, at least some versions of Maori used in
New Zealand, and Austronesian languages used on the coast and islands of
Papna New Guinea). Some African langoages also have regular named-value
systems based on successive powers of 10 (e.g., Dioula).

LEARNING THE SEQUENCE OF NUMBER WORDS

How difficult it is to learn a sequence of number words depends on the features of
the number-word sequence; the nature of errors made in saying a sequence
depends on these features. Deaf children learning the number-word sequence of
American Sign Language gestures make errors on the signs that are difficult for
their fingers to form and show confusions about the rules used to make the
separate related parts of the sequence for 1 to 5, 6 to 10, 11 te 15, and 15 to 20
(Secada, 1985). Most English-speaking children in the United States learn the
English number words to twenty largely as a rote sequence in which the words
between ten and fwenty are not related to the words below fen (although some
children do show awareness that these words are teen words and may over
generalize and say “eight, nine, ten, eleventeen, twelveteen, thirteen™). The
errors children in the United States make are largely omissions of words rather
than reversals, and the portions of the sequence from which words are omitted
may be stable for a long time (Fuson et al., 1982). English-speaking children do
show awareness of the decade structure (the pattern of x-ty, x-ty one, x-ty
two, . . . , X-ty nine), but they take a long time (as much as a year and a half) to
learn the decade words in their correct order. Children learning Italian show
particular difficulties with the reversal from 16 to 17 (the fer is said second for 11
through 16-—undici, . . ., sedici—but is said first for 17 through 19—di-
ciassette, diciotto, diciannove) (Agnoli & Zhu, 1989). Korean children, whose
language has a formal and and informal system of number words, show more
errors in decade words when counting in their informal system, in which all
decade words are new different words, then when counting in their formal system
based on Chinese, in which decade words are regular named tens (Song &
Ginsburg, 1988).

The Asian systems based on Chinese (see Table 15.1) are very easy for
children to learn. They only need to learn the first nine words, the words for the




French, English, and Chinese Systems of Number Words

TABLE 15.1

Chinese
French English English words Chinese words
1 un, une one one i
2  deux two two er
3 trois three three san
4  quatre four four si
5  c¢ing five five wu
6  six six six liu
7 sept seven seven qi
8  huit eight eight ba
9 neuf nine nine jiu
10 dix ten ten shi
11 onze eleven ten one shi yi
12 douze twelve ten twa shi er
13 treize thirteen ten three shi san
14 quatorze fourteen ten four shi si
15  quinze fifteen ten five shi wu
16  seize sixteen ten six shi liu
17  dix-sept seventeen ten seven shi qi
18 dix-huit eighteen ten eight shi ba
18 dix-neuf nineteen ten nine shi jiu
20 vingt twenty two ten er shi
21 vingt et un twenty-one two ten one er shiyi
22 vingt-deux twenty-two two ten two er shi er
23 vingt-trois twenty-three two ten three er shi san
24 vingt-quatre twenty-four two ten four er shi si
25  vingt-cing twenty-five two ten five er shi wu
26 vingt-six twenty-six two ten six er shi liu
27  vingt-sept twenty-seven two ten seven er shi qgi
28  vingt-huit twenty-eight twao ten egight er shi ha
29 vingt-neuf twenty-ning two ten nine er shi jiu
30 trente thirty three ten san shi
31 trente et un thirty-one three ten one san shi yi
39  trente neuf thirty-nine three ten nine san shi jiu
40  guarante forty four ten si shi
50  cinguante fifty five ten wu shi
B0  soixante sixty six ten liu shi
70 socixante-dix seventy seven ten qi shi
80  quatre-vingt eighty eight ten ba shi
90  guartre-vingt-dix ninety ning ten jiu shi
99  quartre-vingt-dix-neuf  ninety-nine nine ten nine jiu shi jiuw
100  cent one hundred one hundred yi bai
101 cent-un one hundred one one hundred one  vi baj ling vi
125  cent vingt cing one hundred one hundred two i bai er
twenty-five ten five shi wu
4,313  quatre mille trois four thousand four thousand st gian san
cent freize three hundred three hundred bai shi san

thirteen

ten three
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powers of 10 (shi, bai, gian, etc.), and the order in which words are said (from
the largest value to the smallest). Chinese children make many fewer errors in
saying the words to 19 than do English-speaking children in the United States
(Miller & Stigler, 1987), and Chinese children show carlier learning of the
sequence between 109 and 200 than do English-speaking U. 8. or ftalian children
(Agnoli & Zhu, 1989). Errors refleciing imperfect knowledge or use of the
decade structure, which the Chinese, English, and Italian number words all
possess, were made by children speaking all three languages: They jumped to the
wrong decade, forgot the current decade they were saying, and had trouble at
transition points in counting backward (e.g., erroneously saying 72, 71, 70, 60,
69, 68 . . .). Fuson et al. (1982} and Siegler and Robinson (1982) alse reported
such difficulties for English-speaking children in the United States.

Most European languages clearly say neither the fen one, ten two, . . . | ten
nine structure for 11 through 19 nor the two ten, three ten, four ten, . . . , nine
ten pattern for the decade names, but most of them show some traces of both of
these structures. In many languages, some words have lost their original mean-
ing. For example, the English twelve for 12 comes from the Anglo-Saxon mwa-lif
meaning “two remain” ( presumably two remain over ten; Greenberg, 1978), and
eleven probably has a similar derivation (e-lif-un: “remain one” or even “ten left
one™). The multisyllabic nature of European languages (compared to the single
syliables used in Chinese} has, over time, led to the omission of parts of words,
to changes in consonants, and to the addition of short syllables in order to
facilitate pronunciation of the underlying words for 11 through 19 and for the
decade words from 20 to 90. These phonetic changes then make it difficalt for
children to see the underlying structure of many European words as composed of
x tens and y ones. Examples in English are the use of thir in thirteen (13) and in
thirty (30) instead of three, the use of fif in fifteern (15) and fifty (50) instead of
five, the use of -tzen for 13 through 19, and -ty for 20 through 90 instead of zen.
These phonetic substitutions and the quantitative meaning of these substitutions
may not be understood even by adults; many of the first author’s university
undergraduates have never realized that -teen and -ty sound like fen ard mean
“ten”; they just used these syllables in a counting pattern without ever reflecting
on their meaning. French and most other European languages have several such
examples of phonetic changes: for example, guatre (4) becomes guator in 14 and
guar in 40. Some Asian languages that have a regular structure except for a few
irregularities also exhibit such phonetic changes: isa means “one,” but sam, san,
and sang are ail used to mean “one” for larger numbers in Tagalog (Philippines);
satu means “one” in Bahasa (Indonesia), but se is used when forming larger
numbers that require “one”; and #it means “one,” but fa is used with larger
numbers in Burmese. All of these phonetic changes make it more difficult for
children learning the language to understand and use the underlying tens and
ones structure.

The preceding discussion has only focused on the nature of the patterns
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involved in producing (and, thus, in learning) a number-word sequence and has
ignored any quantitative aspects of the actual words used in 2 sequence. Any
number-word sequence can, of course, be learned as a totally arbitrary sequence
of sounds like saying the alphabet (4, B, C, D, E, F, G, . . .). Because the
native sequence of number words is so overlaid with quantitative meaning for
adults, a useful technique for understanding what chiidren must learn for a given
language is to generate a particular number-word sequence using the alphabet.
The patterns revealed by such alphabetic sequences are given in Table 15.2 for
three European languages, Chinese, a Papua New Guinea langnage using some
body parts, and an African language using a base of 20 and subtraction. The
base-ten pattern is the pattern of the written base-ten positional numerals. Note
the similarities and differences between the base-ten and Chinese patterns: the
tenth symbol (j) is “zero” in base ten and is “ten” in Chinese (10 renses the first
symbol I and needs a new symbol O while shi in Chinese is just another new
word) and the values are not named in base ten (e.g., 55 is ee [ five five] in base
ten rather than eje [ five fen five] as in Chinese). It is clear that some patterns
would be easier than others to learn, and the patterns lead to predictions about
where errors might cccur. Some languages use a word that has a guantitative
meaning—Iike hand for five or man for twenty—for a particular number. Such
meanings may be ignored in the original learning of the sequence, but they may
facilitate the linking of quantitative meaning to related words when the sequence
is used for cardinal purposes. Thus, languages may vary in how easily individual
words and patterns can be related to cardinal meanings. These differences have
important implications for addition and subtraction.

RELATING SPOKEN NUMBER WORDS
TO WRITTEN NUMERALS

Written Numerals Having Sequence/Count Meanings

Children learn associations between written numerals and spoken number words,
and these written numerals take on the meanings of the spoken number word. For
small number words, the meanings may be cardinal (3 may mean three cookies)
or sequence meanings (3 may mean what is said after two and before four), but
for most larger words, children have few cardinal meanings. Thus, the meanings
of the number words and of the numerals are initially only sequence meanings (8
means the word coming after seven and before nine). The pattern in the sequence
of written numerals used in most languages is a simple one: It is just the regular
Chinese pattern with the value words omitted and a O numeral used for any
missing value, so that all the values stay in their correct relative position. This
numeral pattern is given in Table 15.2 as the base-ten pattern. Children can learn
the sequence of written numerals by its pattern, but in order to say a given written



TABLE 15.2
Patterns in Different Number-Word Systems

Num- Base

ber Ten Chinese English French German Kilenge® Yoruba®
1 a a a a a a a
2 b b b b h b b
3 c c c c ¢ c c
4 d d d d d d d
5 e e e e e hand e
6 f f f f f hand a f
7 ¢ g g g g hand b g
8 h h h h h hand ¢ h
9 i i i i i hand d i
10 aj i i i i b hands i
11 aa ja k km k b hands a only ak
12 ab ib | Im | b hands b bk
13 ac jc mn nm cj b hands ¢ ck
14 ad id dn om dj b hands d dk
15 ae je on pm ej ¢ hands |
16 af if fn am fj ¢ hands a d reduces m
17 ag ig gn ig ai ¢ hands b ¢ reduces m
18 ah jh hn jh hj ¢ hands ¢ b reduces m
19 ai ji in ji ii ¢ hands d a reduces m
20 bj bj pg r mn one man m
21 ba bja pga rsa aomn one man a only aonm
29 bi bji pqi ri iomn one man hand d ionm
30 ci cj rq t cn one man a b hands o©
3t ca cja rqa isa aocn one man a aono
b hands a only
39 ci cii rqi ti ioch one man a iono
b hands hand d
a0 dj dj dq uv dn one man b over mb
50 ej ej oq ev en — j reducas mc
b5 ee eje oqge eve eoen e e raduces mc
60 fj fi iq wy fn onhe man ¢ over mc
70 g g g4 wyj an — ==
80 hj hj hq dr hn one man d over —
20 il ij iq drj in — —
91 ia ija iqa drkm aoin — —
99 ii ifi iqi drji ioin — —
100 ajj ak ar X p — me
101 aja akla ara Xsa pa _ —
125 abe  akbje arpqe Xre peomn — —_—

aKilenge is a Type |ll Papua New Guinea language typical of 40% of the languages {L.ancy,
1978); not enough information was available to fill in all the numbers.

bYoruba is a West African language based on 20 that uses subtraction frequently (Zaslav-
sky, 1973); not encugh information was available to fillin all the numbers; kis an abbreviation
for “on ten” or “in addition to ten,” | is an abbreviation of *'e reduces m,” and several other
higher forms are slightly abbreviated in actual use but are given in the table as if they were not.
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numeral, they must relate the pattern in the numerals to the pattern in their own
number-word sequence {(or learn a very large number of numeral to numberword
associations by rote).

Clearly, the ease with which children can relate the numeral and number-word
patterns depends on their number-word sequence. Chinese (and Japanese and
Korean) children have a very simple relationship 1o learn, because the patterns
share many features and have no special irregularities. For European fanguages,
this relationship is much more complex. The English words do not even signal a
pattern break at 10 because the first 12 words are rote, arbitrary words. For many
languages (e.g., French, Spanish, Italian, German, English, and Swedish), all or
part of the words for the numerals between 11 and 19 have a number-word order
opposite to the numeral order: One says the four first (quatorze or catorce or
quattordici or vierzehn or fourteen or fjerton), but writes the four second (14).
Some languages switch the order of the fen and the ones words at 15 or 16, but
the written numerals keep the single ten-then-one order. Many European lan-
guages have the decade word before the ones word (vingt et un, twenty-one,
ventuno) as in the written numerals, but in German all words between 20 and 100
are ordered opposite to the written numerals, with the ones words before the tens
word (e.g., einundzwanzig is one and tweniy).

The difficulties Enropean children sometimes have in learning the sequence of
number words and in relating this sequence to the pattern of written numerals is
lustrated by a report by Neuman (1987) about an 11-year-old Swedish boy in a
remedial math class who, after some work on structuring by tens, made a draw-
ing of rows of numerals so that 1 through 10 were lined vp, with 11 through 20
lined up just below, and 21 through 30 lined up just below that. This boy shouted
out excitedly,

You see . . . I sat the other day and thought about numbers . . . andso . . . s01
wrote on a bit of paper like that . . . and thenTsaw . . . yousee? . . . Look!! . . .
Have you ever noticed? . . . That one comes under one the whole time, and two
comes under two . . . and three under three . . . Then it’s much easier to count!t
(pp. 318-319)

This boy had been in school for 4 years and undoubtedly had had the tens and
ones structure of the numerals “explained” to him many times, but he still had
not seen the numeral pattern or related this pattern to the Swedish number words.
For some European children, the easier regular pattern of the numerals may
provide the structure necessary to understand the pattern of an irregular system of
number words.

Written Numerals Meaning Tens and Ones

Children need to understand the gnantitative meaning of written numerals as tens
and ones and not just learn the nonquantitative alphabetic pattern of the numer-
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als. Evidently, children speaking regular, named-value Asian languages, which
name the “ten,” learn these tens and ones meanings much more easily than do
English-speaking children in the United States. Miura (Miura, 1987; Miura,
Kim, Chang, & Okamoto, 1988; Miura & Okamoto, 1989) has reported, in a
number of studies, that Chinese, Korean, and Japanese kindergarten and first-
grade children chose to show two-digit numerals as combinations of ten-umnit
blocks and unit blocks, whereas their English-speaking age-mates in the United
States showed the same numerals only with unit blocks (e.g., they counted out
42 unit blocks by ones instead of choosing 4 ten-unit blocks and 2 unit blocks).
This was true even though the Japanese first-grade children had had no instruc-
tion on tens and ones in school and the U.S. first-graders had (Miura &
Okamoto, 1989). Children in the United States have considerable difficulty in
replacing their unifary sequence meaning of numerals by a meaning in which the
first digit means “ten.” Many first and second graders, and even substantial
proportions of fifth graders, show the meaning of the I in 16 as one object and
not as ten objects (C. K. Kamii, 1985, 1986). The / may be said by children to
“teen” the &, that is, to make the 6 be sixteen instead of six, but there is no
comprehension of 16 being composed of a ten and a six. M. Kamii (1981) argued
that this “glued-together” pattern meaning of numerals is similar to spelling: 16
and 67 are reversals, just as are dog and god, and each of the glued-together
composites in the pair has a different meaning, but the 7 and the 6 within 16
and 61 do not have quantitative meaning aside from their single-digit meanings
as “one” and “six.” The path to quantitative named-value multiunit mean-
ings (e.g., the hundreds-digit teiling the number of hundred-units) is a difficuit
one for English-speaking children, and many of them do not negotiate this
path successfully. They may, at best, be able to use verbal named-value labels,
that is, to tell which numeral in a four-digit numeral is called the hundreds digit.
The very strong unitary meanings of number words and written numerals con-
tinue to create difficulties for English-speaking children in carrying out single-
digit and multidigit addition and subtraction (see Fuson, 1990, in press-a, in
press-b).

Even though the pattern of regular named-value number words relates fairly
easily to the regular pattern of positional base-ten numerals, these systems do
have several differences that can cause difficulties (see Fuson, 1991, for a discus-
sion of the difference between named-value number words and the positional
base-ten written numerals). It is quite common to write incorrect named-value
numerals that mirror the named-value words {e.g., writing 300408 for three
hundred foriy-eight). English-speaking children make such errors (Bell & Burns,
1981). Europeans first changing from Roman to Arabic numerals also made such
named-value errors {Menninger, 1958/1969), and Dioula and Baoule African
children also do so (Ginsburg, Posner, & Russell, 1981b). We know of no
evidence concerning how frequently Asian children may make such named-value
number-word intrusion errors when first learning to write numerals.




SINGLE-RIGIT ARDITIOM AND SUBTRACTION

Cardinal Meanings for Number Words

In order for number words to be used for addition and subtraction, they must take
on cardinal meanings; that is, they must tell how many there are. The structure of
the system of number words, and the number words themselves, affects which
cardinal meanings are easily understood. In Table 15.2, the Kilenge system
supports cardinal meanings for 5, 10, 15, and 20 because the hand and man
words can have gquantitative meanings. In Chinese, once a cardinal meaning for
shi (10} is understood, the cardinal meanings for 11 (ten one) through 99 (nine
ten nine) follow quite readily. In English there is little similar support for these
meanings for two-digit numbers. The words through twenry are just a linear
sequence of piles of entities that get one Jarger, and the words between twenty
and one hundred are just a similar sequence of very large piles that suggest, at
most, a composition of a large plus a small pile of things (37 is 50 and 7 of the
same single units, not 5 tens and 7 ones). Features of number-word (or numbes-
gesture) systems can even interfere with the construction of these cardinal mean-
ings. Papua New Guinea Oksapmin children, who learn a body-parts number
sequence in which a succession of bedy locations constitute the numerical se-
quence, show cardinal confusions between similar body parts (e.g., left elbow
and right elbow) even though these are guite separated in the sequence (Saxe,
1981). Some number-gesture systems have many clear cardinal references,
whereas others do not (Zaslavsky, 1973).

Most number-word systems have a considerable number of words with no
cardinal meaning: These words take on cardinal meaning through counting ob-
jects. The last counted word tells how many there are in (i.e., has a cardinal
reference to) the pile of counted objects. How children first make this connection
between counting and cardinal meanings of number words is discussed by Fuson
(1988; this volume, chap. 6), including the developmental sequence of continu-
ing relationships children construct to relate sequence, counting, and cardinal
meanings. Once children can move from a count meaning to a cardinal meaning
and vice versa, they can add by “counting all” and subtract by taking away or
separating. In counting all, a child counts out objects for the first addend, counts
out objects for the second addend, and then counts all of the objects. In taking
away or separating, the child does the reverse: Counts out objects for the known
sum, counts scme of those sum objects up to the known addend and moves them
away, and then counts the remaining objects to find the unknown addend objects.

Developmental Paths to More Advanced
Addition Procedures

These original object counting procedures become increasingly abbreviated and
abstract. Fingers are frequently chosen as the objects to be counted, and children
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eventually begin to learn finger patterns that make certain numbers. At this point
there are at least three developmental paths children can take through addition
and subtraction of single-digit numbers. Different cultures seem to support cer-
tain paths, although there is also individual variation within a culture. Fingers are
used in conceptually different ways in these different paths. These differences
seem to be related to the way a particular culture shows the numbers 1 throogh 10
on fingers, although other factors may also be involved. On all of these paths,
children construct relationships among sequence, count, and cardinal meanings
of numbers words, but the meanings that predominate differ. These paths de-
scribe children in the United States (the pertinent research is summarized by
Fuson, 1988; 1990, in press-a; in press-b; and this volume, chap. 6), in Sweden,
(Neuman, 1987), and in Korea (Fuson & Kwon, in press-a, in press-b). Some
examples of these paths that occur in other cultures will also be given. These
paths clearly depend on fingers and not the structure of the number words
because English and Swedish number words have identical structures. The reg-
ular Korean words do confer some advantages even beyond the Korean finger
methods.

Sequence Counting. In one path, taken by many chiidren in the United
States, the number words themselves eventually become the objects that present
the addends and the sum within addition and subtraction situations (see Table
15.3 for steps along this path), and the fingers are only used to keep track of the
second addend. One begins this path by using fingers on one hand to count out
one addend and fingers on the other hand to count out the other addend,; all of the
fingers are then counted to find the sum. When counting, fingers are typically
raised beginning with the finger closest to the thumb and moving across the other
fingers to the smallest finger; the thumb is raised last.! The child holds both
hands up in the air, usually with the palm toward the face. Children eventually
learn patterns for each number from 1 through 5 on either hand; they can then just
raise finger patterns for each addend and count all of the fingers (Baroody,
1987¢; Stegler & Robinson, 1982). Children eventually learn that they do not
have to count all of the fingers in the sum count, but can begin the counting from
the first addend word, that is, they can count on from the first addend. This is not
a rote procedure but requires them to shift from the cardinal meaning of the first
addend word to a counting meaning of that word (see Fuson, this volume, for a
more detailed discussion). Finally, children do not need the perceptual support of
the fingers to see the addends and the sum; they simply say the number words in
sequence, and these sequence words themselves present the addends and the sum

'No claim is made in this chapter ¢hat the finger patterns shown in Table 15.3 are those used by all
children or adults in the United States, Sweden, or Korea. Data concerning the range of finger
patterns that may be used in different geographic and subcultural areas of these countries are not now
available. The patterns shown are those reported in the references cited.



TABLE 15.3

Three Developmental Paths Through Single-Digit Additicn

Fingers Keep Track of
Sequence Counting

Fingers as Count Names

Cardinal Finger Counting

Count ALL

Pattern Count All

%“H?H@?

Pattern Count On

Sequence Count. On:
Cardinalized
Number-Word Sequence

@ 0%

567

fingers rarsed Successively
Sums Over Ten: 8 + 6

Two-handed finger pattern

fingers raissd succegeively

One-handed fmger pattern
D@

o= thumb (53 +

Count AlL

Count Name Erxors
4= 3
q
5/’
Y4+5=5

Count All

'234 3 |23,+ 7 5 y
RS B el

Pattern Count A1l

= 234
e i Bl

2 7
Pattern—Count-Pattern
27-7 T

7.p8
im% {n? 2+7=9

Finger Count On:
Cardinalized
Finger Sequence

L N
B9

Sums Over Ten:

3

8+ 6

Soms Over Ten:

8] folded

8+ 6
2 folded

I ab-ns

o

Mumber Line

9

12345¢
I aala]mmq ¥

W m

Y unfolded ten four

solded
unfold g

Note. @] means a cardinal meaning for four, 4 means a count meaning for four,

means a sequence meaning for four, [[4] means a ten and four meaning for 14, Only
the falding down Korean methods are shown.
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to the child. If the second addend is very large, some method of keeping track of
how many sequence words have been said is required. Fingers are the most usual
means of keeping track. Here, the fingers function as a cardinal finger pattern
that is matched to each sequence word as it is said: Fingers are raised in succes-
sion with each word (rather than being put out before and then counted as in
object or pattern counting on), and the sequence counting stops when the desired
finger pattern has been made (see Table 15.3). New Guinea Cksapmin children
use such sequence counting on for addition problems that exceed their native
body-parts sequence, which only goes to 27: They count on in English and use
their body-parts sequence to keep track of the second addend {Saxe, 1985).

The Fingers as Count Names. In a different path, taken by many Swedish
children (Neuman, 1987), each finger takes on a particular count name from one
through ren; see Table 15.3 for steps along this path. Swedish school entrants
were interviewed by Neuman; in Sweden children begin first grade at age 7.
These children counted on their fingers by placing both hands on the table in
front of them with the palms down and the thumbs in the middle and counted
tfrom left to right (some counted similarly with their hands raised in the air).
When adding two small numbers, they did not put the second addend on the
second hand, but counted it continuing across the fingers, beginning with the
finger to the right of the last finger used for the first addend. Al fingers were
then counted to find the sum by beginning from the left and counting to the right.
With this method each finger always receives a standard word during the count-
ing of the first addend and the sum: The left little finger is always one, the left
thumb is always five, the right thumb is always six, the right little finger is
always ten, and the middle fingers take on the words between these words. The
word received by a given finger always varies during the second addend count
because those words depend on the size of the first addend. Through repeated
standard counting, each finger takes on its own count name from one through
ten.

Many children stay in this count-name stage for a considerable period of time
(a substantial proportion of these school entrants displayed this level) and make
errors in adding and subtracting that result from their failure to connect these
count names to a cardinal meaning for these names: Thus, for example, the word
Sour is the count name for the index finger on the left hand, but four does not also
have a cardinal meaning as referring to all of the first four counted fingers.
Children therefore make the three kinds of mistakes shown in Table 15.3.2 For
example, 4 + 5 is found to be 5 by using the count meaning of 5: 4 fingers (or
possibly, the finger named four) plus the finger named 5 (the thumb on the left
hand) is 3 fingers; 2 -+ 7 = 7 by using count meanings for both rwo and seven:

2Children at this level were frequently not very articulate about the meanings they were using, so
increased understanding of the conceptual bases for these mistakes awaits further research.
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The finger rwo and the finger seven go along the fingers to finger seven. Also, 2
+ 7 = 8 because each count finger is just one finger: “the seven finger plus one
more finger (which happens to be named two, but this name does not matter)
equals finger eight,” Children showed a strong predisposition at this level to add
by beginning with the larger number regardless of which number was piven first
in the problem.

Eventually, the fingers became a cardinalized finger sequence in which the
second addend word has a cardinal value as the number of fingers counted past
the first addend. Children may first pass through a period in which they estimate
the second addend by counting an approximate number of words past the first
addend but do not actually keep accurate track of the second addend. Neuman
(1987) does not provide much information about how Swedish children come to
keep track of large second addends, because almost all of her problems had a
small addend that could just be subitized when counting on. The obvious way to
keep track of the second addend accurately is to use number words to count the
second addend fingers; the fingers then show the sum. This is opposite to the use
of fingers and spoken words in the first path, where the spoken words present the
sum and the fingers present (or keep track of) the second addend.

New Guinea Oksapmin children follow this second path in solving addition
problems within the range of their 27-unit body-parts number sequence. They
count on from a given body location while calling each counted-on location a
body part from the second addend body-part list (Saxe, 1985). The number line
used in some textbooks is structured like this second path: the written numerals
present both the first addend and the sum, and the spoken number words present
the second addend as children go up the number line. Chisenbop, the Korean
method of finger calculation that attracted national attention in the United States
in the 1970s, is also structured as in the second path: Finger patterns on one hand
present 1 through 9 (the thumb pressed to a surface is 5, so the thumb plus the
index finger—the one finger—is 6, etc., through the thumb and all four fingers,
which equals 9), the first addend is put onto. the right-hand fingers, number
words are spoken aloud to present the second addend as each successive finger
number pattern is made, and the fingers then present the sum (if the sum is over
ten, tens are made on the left hand). These one-handed finger patterns can also be
used successfully by first graders learning to add by counting on in the first path:
Words say the sum, and the one-handed finger patterns show the second addend
and match the sum count to stop it at the correct sum (see Table 15.3; see also
Fuson & Secada, 1986). In that study we used the one-handed finger patterns
rather than the two-handed finger patterns usually used by children in the United
States for second addends over 5 because children frequently put down their
pencil in order to use two-handed finger patterns, slowing their addition consid-
erably.

The first path is easier than the second path to carry out for sums over 10
because the fingers can easily show any single-digit number through 9 as the
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second addend {either with one-handed or two-handed finger patterns, see Table
15.3), whereas the second path requires that fingers be reused in some way to
show any sums over 10 because the fingers show the sum. Table 15.3 shows one
possibility for doing this: moving the fingers for 1 through 3 (the left hand) over
to the right of the right hand and reusing them. This has the advantage of clearly
showing the tens and ones structure: Eleven is two hands (ten) and the named one
finger, 12 is two hands (ten) and the named fwe finger, and so on. This, however,
requires a move of the second hand for sums over 15, which might get too
complex for some children. Neuman (1987) did not report how Swedish children
use their named fingers to solve sums over 10, so it is not clear how children
sofve (or how the culture solves} this reusing problem. In her experimental
teaching, Neuman used Cuisenaire ten-rods and one-rods for teaching sums over
10 rather than using fingers. It would also be possible for children to shift to the
first path and say the sum words while keeping track of the second addend with
the named fingers. How difficult this shift wounld be is not clear.

Cardinal Fingers Reused Over Ten. A third path through addition is a
cardinal approach, in which fingers are counted or patterned to make finger
patterns for 1 through 10 and fingers are reused to make numbers between 11 and
19. In this approach, the 10 fingers support the construction of addition methods
based on structuring numbers by 10. This path was evidenced by first-grade
Koredn children interviewed to ascertain how they solved single-digit addition
and subtraction problems (Fuson & Kwon, in press-a), and it is the path sup-
ported by Japanese teaching tiles structured around 10 (Hatano, 1982).

When a Korean child is counting all, the hands are held up facing the person
with the thumbs ouf, as in the first path. However, the counting starts with the
thumb and moves linearly across the fingers to the little finger, then continues
onto the other thumb, and moves across to the little finger on that hand (see Table
15.3), or counting may be done in the reverse fashion beginning with the little
finger and moving to the thumb. Some children begin on the left hand and move
to the right, and some begin on the right hand. Children may count all by folding
down fingers as each count is made, or they may begin with folded fingers and
unfold the fingers while counting.? The first step in finding sums by counting alt
is like the second Swedish path: The first addend is counted as the fingers are
folded, the second addend is counted as the next fingers are folded (the second
addend does not begin separately on the second hand), and then all of the fingers

“Koreans typically show small cardinal finger patterns for age or small numbers of objects (e.g.,
three apples) by raising their fingers. (One may be shown by the thumb or by the index finger, 2 may
be shown by the thumb and index finger or by the index and second finger, 3 may be the shown by the
thumb and next two fingers or by the three fingers other than the little finger, 4 is shown by the four
fingers, and 3 is the thumb and four fingers. In the pattern-couni-pattern procedure shown in Table
15.3, 4 might be made with the four fingers rather than with the thumb and ¢hree fingers, as in the
earlier unfolded finger counting all.
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are counted to find the sum. Children then may learn finger patterns of folded
fingers so that they can fold fingers for the first addend without counting, count
and fold fingers for the second addend, and then recognize the folded fingers for
the sum. Counting all by unfolding is done in the same way (the unfolding
second addend fingers are next to the unfolded first addend fingers), and un-
folded finger patterns are learned for pattern adding.

To find sums over 10 by counting all in the folding-down method, all 10
fingers are folded (i.e., counted to 10), and then the fingers are unfolded begin-
ning with the little finger of the second hand and moving across the fingers
toward the thumb (i.e., the last fingers folded are the first fingers to be unfolded).
A child using the method of unfolding fingers would count numbers over 10 by
folding fingers again beginning with the last finger unfolded. With either meth-
od, the sum over 10 is easily said in the ten-structured Korean words as ten (all
the fingers were used) the-number-of-fingers-reused (e.g., ten four in Table
15.3).

Korean children learn in first grade the over-ten method for adding sums over
10. In this method, addition (usually) begins with the larger addend and the
smaller addend is broken up into (a) the number that will make ten with the first
addend and (b) the remaining number. So eight plus six equals eight plus two
(which makes ten) plus four (the rest of the six) = ten four. This method is easy
to do in Asian languages in which 11 to 19 are said ten one, ten two, . . . | ten
rine, because the sum is said as just ten and the rest of the second addend over
ten. In English one has the extra step of finding this ten sum as a teen word {e.g.,
ten plus four is fourteen). Many first and second graders in the United States do
not know these ten sums and have to count on from ten to find the sum {e.g., they
find ten plus four by saying, “ten, eleven, twelve, thirteen, fourteen™). The
Korean finger methods of folding and unfolding fingers support the learning of
the over-ten method because (a) they make it easy to learn all of the complements
to ten (i.e., the pairs of numbers that equal ten) just by looking at or thinking of
the folded versus unfolded fingers, and (b) the counting of the second addend by
folding and then unfolding fingers gives visual pattern support for breaking the
second addend into the part that makes ten and the rest over ten. Most of the
Korean first graders interviewed in Fuson and Kwon (in press-a) used the over-
ten method even before they had been taught this methed in school, and most of
them knew, without calculating, which number made ten with a given number.

The second and third paths, thus, begin in the same way: counting alt by
showing the second addend on fingers following the first addend fingers. Korean
first graders interviewed midway through the school year did not show any of the
count-name errors shown by Swedish children just entering first grade: The
Korean children were considerably more advanced in their addition methods, so
it is possible that younger Korean children might show such count-name errors.
Alternatively, the visual salience of the folded (or unfolded) fingers and the
common reusing of fingers in the folding and unfolding methods may help
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Korean children keep the cardinal view of fingers paramount and avoid count-
name errors. This reuse of fingers was demonstrated in two other ways, both of
which fall along the first developmental path. A couple of Korean children
counted all by unfolding fingers for the first addend while counting them and
then folding some of those same fingers to make the second addend while
eounting them; this unfolding and folding were then repeated while counting all.
A couple of children also made one addend on one hand by unfolding and then
folding fingers (e.g., made 7 by unfolding 5 fingers and folding 2), and the other
addend on the other hand by unfolding 5 and folding 3 fingers, and then stated
the sum as fen (the 5 fingers unfolded on each hand) five {the sum of the 2 and 3
folded fingers). )

Some Korean children did show methods from the first path. The examples of
reusing fingers just described both use addends in this nonsuccessive way. A few
Korean children also counted on by the first method, saying the sum words for
the second addend. Their method of keeping track of the second addend was
usually not evident, but either folded or unfolded finger patterns counld have been
used. Ascertaining whether some children follow the whole first developmental
path or only adopt some steps within it {e.g., count on before learning the over
ten method) requires more research.

In Japan many {irst-grade teachers use tiles that show the numbers 6 through 9
as S+ 1,5+ 2,5+ 3, and 5 + 4 (Hatano, 1982}, just as the one-handed finger
patterns do and as the two-handed finger patterns can do if one thinks of the first
hand as 5 (Neuman, 1987, reported that Swedish children do think of 6 as the 5
finger plus 1 more finger, 7 as the 5 finger plus 2 more fingers, and the ¢ finger
as 1 finger less than the ten finger). These tiles support the over-ten method, and
the over-ten method is taught to all Japanese children (or at least appears in all
Japanese textbooks; Fuson, Stigler, & Bartsch, 1988).

Stucturing Sums Around Ten

These paths have different advantages and disadvantages for supporting methods
of finding sums that are structured around ten (such methods are advantageous
for multidigit addition and subtraction as well as being effective general meth-
ods). The first path entails no difficulty in one’s finding sams over ten, but its
usval application by children in the United States is in & unitary sequence count-
ing on in which ten plays no special role: The sum count moves across ten
without marking ten with the fingers or with the words, because the English
language moves across ten without showing any strong difference in the words
below and above it. Sequence counting on could support an over-ten method if
the finger pattern for the second addend was separated into two parts: the words
counted up to ten and the words over ten. Thus in 8 + 6, for example, fingers on
one hand could be raised for the words nine and ten, and fingers on the other
hand could be raised for the words eleven, twelve, thirteen, fourteen, showing a
total of 6 fingers, but separated into the two that made ten and the four that make
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14 (i.e., ten four). Using an English version of Chinese words would also
structure sequence counting on around ten: As the six fingers goup in 8 + 6, the
words would say eight, nine, ten, ten one, ten two, ten three, ten four 14), thus
showing the two fingers to make ten and saying the four fingers over ten. In the
second path, the need to reuse fingers on both hands for sums between 10 and 19
has already been discussed. Such a reuse can support an over-ten method because
the fingers for the first 10 count names allow a child to leamn the complements to
ten visually and kinesthetically, and the second addend is broken into the two
needed parts visually (see Table 15.3). The number line, as used in schools, is
always taught as a unitary procedure, in which the second addend jumps to make
ten and the jumps over ten are not differentiated, but the number line could
potentially be used to support an overten method. Both children and teachers
show considerable difficuity with a number line, using it as a count model {and,
thus, sometimes ending up with answers off by 1) rather than as the measuring
model it actually is: Each number is shown by the length from 0, not by the
number itself. A better support for the second path might be a number list of the
written numerals (a count model like the Swedish row of finger numbers), in
which the numerals over 10 were written in a different color to make the shift
more sakient (the numerals do mark the different structure before and after ten
better than do English words). Some children might temporarily show the same
use of count meanings of the numerals unconnected to the cardinal meanings
seen in Swedish children (i.e., the numeral 4 would be the only meaning for Jour
rather than four also having the cardinal meaning of the first four numerals), but
they would presumably move on to connect the count and cardinal meanings.

An alternative method of structuring addition by ten could be carried out by
using the {irst method of putting each addend on a separate hand if each addend
over 5 is presented on one hand as a pattern involving 5 (e.g., 7 = 5 + 2). For
two such numbers, their sum is easily found by combining the two fives to make
ten and combining the parts of each over 5 to make the x in fen x (in Asian
words). The use of this method by two Korean children was described earlier.
Two first graders in the United States who learned one-handed finger patterns in
one of the first author’s instructional stdies also invented the same approach by
putting one number on each hand: 7 + 8 would be the thumb plus two fingers on
one hand touching the desk (7) and the thumb plus three fingers on the other hand
touching the desk (8), so the two thumbs made ten (5 + 5 = 10} and the 2 + 3
fingers down made 5, for a sum of 15. Roman numerals also support this 5-based
approach, with 7 + 8 = VII + VII = XV. The Japanese tiles have this five sub-
base and therefore can also support this method.

Subtraction

Subtraction can be carried out in all three paths by both forward {adding up or
counting up) and backward (taking away or counting down) methods. The draw-
ings m Table 15.3 can be interpreted as showing the forward subtraction pro-
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cedures for each path: In each drawing the first addend and the sum are known,
and the second addend is the unknown number to be found. For the top drawings
this means that the order of the counts is reversed; for the lower drawings, the
feedback loop governing the stopping of the counting depends on the sum word
or the sum finger patiern being reached, and the unknown addend is then read
from the second addend words or fingers. There is insufficient space here to
present and discuss backward procedures along each path. These backward pro-
cedures for the first and second paths are more difficult than are the forward
procedures, because they require counting backward (which is much mere diffi-
cult than is counting forward; Fuson et al., 1982) and because two alternative
counting-down procedures can be carried out and children sometimes confuse
them (e.g., Steinberg, 1984). The backward procedure for the third path is not so
difficult because it is supported just by looking at the fingers; the most difficult
part of the procedure (the separation of the second addend) involves forward
rather than backward thinking. For example, to carry out the down-over-ten
method that is the reverse of the addition over-ten method for 14 — 6, one just
makes “ten four” on the hands, looks at the folded four fingers, thinks of how
much more makes 6 (an additive procedure), and then takes that away from ten
by folding down two fingers from ten unfolded fingers or by thinking of the
complement of 2. Korean children also use a take-from-ten method in which the
known addend is subtracted from ten and the difference is added to the amount
overten: 13 — 6 (ten three minus six) is thought of as ten minus six is four plus
the three is seven (Fuson & Kwon, in press-a).

ADDITION AND SUBTRACTION
OF MULTIDIGIT NUMBERS

Addition and subtraction of multidigit numbers requires that the same values be
added to each other or subtracted from each other. Thus, to add 2,489 and 3,765,
the thousands are added to each other, the hundreds are added to each other, the
tens are added to each other, and the ones are added to each other. When there are
t00 many of a given value, 10 of them must be given over {or carried, or traded,
or regrouped) to the next larger value; when there are not enough of a given value
to subtract from, 10 of them must be given over from the next larger value {(or
borrowed, or traded, or regrouped) to make enough to subtract. There is nothing
explicit in the written multidigit numerals either to show the values, i.e., to show
what should be added to or subtracted from each other, or to show that 10 must
be given over sometimes. Therefore, understanding how to add and subiract
multidigit numbers must be supported in some way.

Systems of number words vary in the extent to which they support these two
different understandings crucial to understanding multidigit addition and subtrac-
tion. Regular named-value systems support these understandings, while irvegular
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systems do not. For example, the Dioula language used in West Africa is a
regular named-value language that names tens, and adult unschooled Dioula
merchants add two-digit numbers mentally by adding the tens, then adding the
ones (often by an over-ten methed), and then adding the ones sum to the tens sum
(Ginsburg, Posner, & Russell, 1981a). Unschooled Oksapmin adult store owners
adapted their unitary body parts counting system to early Austalian currency that
used 20 shillings to the pound by counting up.to 20 (the inner elbow on the
second side of the body) and then beginning the count again at 1; with this
base-20 system, pound and shilling amounts could be added or subtracted by
adding the shillings within this 20-value and then adding the pounds (Saxe,
1982).

Asian named-value systems, which are regular, make it very easy to see that
one adds and subtracts like values. They also support transferring 10 when there
are too many or not enough because sums over 10 are actually said as tens and
ones. Thus, when adding 2,489 + 3,765, 9 + 5is ten Sfour, which indicates that
there are 4 ones left and 1 ten to be added to the other tens. We found, in
interviewing Korean second and third graders (Fuson & Kwon, in press-b), that
some of them used named-value conceptual structures for the tens (and also for
the hundreds) so that, in 489 + 765, a child would say, “eight tens plus six tens
is hundred four ten™ (found perhaps by using an over-ten analogue within the
tens: eight tens plus two more tens from the six tens make one hundred and the
four tens left from the six tens make one hundred four tens). Other Korean
children used conceptual structures in which the numbers in each column were
said without values, but the values were kept in mind and used for correct giving
of tens when a sum was greater than 10 or a value of a minuend needed to be
larger in order to subtract from it: In such a case a child said, “eight plus six is
ten four” and wrote down the four and traded the ten over to the next column to
the left. Some children used mixed conceptual structures within the same sum
(“eight plus six is hundred four ten™), using or not using the named-values very
freely. For both addition and sabtraction, the Korean children showed remarkable
accuracy and could explain and justify their procedures. For example, in sharp
contrast to children in the United States, many of whom say that 1 written at the
top of an addition problem to show a carried ten or hundred is a one (rather than
saying it is a ten or a hundred), every Korean child said that the ] written in the
tens column was a ten, and only one Korean child said that the 1 written in the
hundreds column was a one. Thus, these Korean children were aware of and used
the different values of the numerals when they added and subtracted multidigit
numbers, whereas many children in the United States do not show such
awareness.

Children in the United States have great difficulties in learning place vaiue

#There are no singulars or plurals in the Korean language, and Koreans say only fuindred, and not
one hundred.
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{i.e., learning the values of the written numerals and how these values relate to
the English words) and in carrying out multidigit addition and subtraction accu-
rately (much of this evidence is reviewed in Fuson, 1990). Many build nsither
named-value conceptual structures for the English words nor positional base-ten
conceptual structures for the written numerals. Either of these are conceptual
structures adequate to support understanding of multidigit addition and subtrac-
tion. Differences between named-value systems of words, including most Euro-
pean and Asian languages, and the positional base-ten system of written nurmer-
als used in most countries are discussed in Fuson (1990). Many children in the
United States instead construct inadequate conceptual structures for written mul-
tidigit numerals in which numerals are interpreted as concatenated single digits:
aumbers from 1 through 9 placed adjacent to each other. These children make
many errors in multidigit addition and subiraction that reflect this inadeguate
single-digit conceptual structure (see Fuson, 1990). French-speaking Canadian
children show many similar difficulties with place value and multidigit addition
and subtraction (Bednarz & DufourJanvier, 1986; Bednarz & Janvier, 1982).

The irregularities in the English language and characteristics of the mathemat-
ics curticulum in the United States seem to contribute to the failure to construct
adequate conceptual structures and adequate multidigit procedures. First, most
children in the United States find sums over 10 by using unitary conceptual
structures that do not involve tens and ones. Thus, when they get too many in a
given column, neither the English words for the sum nor their conceptual struc-
tures for this sum suggest giving over the ten to the tens column: for 489 + 875,
a child would find or know & + 5 to be fourteen but this would not be thought of
as a ten and four ones. Such children have to switch between using unitary
conceptual structures for finding sums over 10 to named-value tens and ones
structures o trade when there are too many. This switch is exemplified by the
step invented by first graders who had used base-ten blocks (see further on) to
understand multidigit addition (this step was also used by many second graders
who were shown it in a study the following year, Fuson & Briars, 1990). When
these children attempted a problem without the blocks, they would add a column
{by using a known fact or one-handed finger patterns to count on) to find the sum
{e.g., “eight plus six is fourteen™), and then they would write this sum (14) out
to the side by using their pattern relationship between 2-digit numerals and
counting words, look at the written 14 as a tens and ones structure because they
knew they had to break the 14 down into a ten and the left-over ones in order to
trade the ten, and then write the 4 in the ones column and write the 1 ten in the
tens column. They could explain what they were doing and used named-value
conceptual structures for multidigit addition and subtraction, but they needed the
written suppert of the numerals to switch from their unitary meaning of the sum
word fourteen to a tens and ones structure for this word (they did not automatical-
ly know that fourteen meant 1 ten and 4 ones). In contrast, regular Asian lan-
guages automatically provide sums over 10 in a tens and ones structure, so




15. CULTURAL TOOLS iN ADDITION AND SUBTRACTION 303

children speaking these languages either do not have to switch meanings as they
add or the switch is a very easy one.

Second, the curriculum in the United States gives children only 2-digit addi-
tion problems with no trades for a long time. The English language cannot
support named-value meanings for these problems because the words are irreg-
ular for the tens. Furthermore, because no trades are required, the tens meaning
of the digits on the left is not evident: they look and act like single digits that are
added to and subtracted from each other rather than tooking or acting like tens
and ones values. These children may not add or subtract 3-digit numbers until the
third grade and 4-digit numbers until the fourth grade (Fuson, Stigler, & Bartsch,
1988), so the support of the regular named-value English words for hundreds and
thousands is not available until quite late. Finally, the support provided in text-
books is insufficient for children to construct named-value conceptual structures:
Multidigit addition and subtraction is approached as a rule-based manipulation of
written digits in most textbocks (Fuson, in press-a).

English-speaking children can construct adequate conceptual structures that
enable them to understand multidigit addition and subtraction and carry out these
operations accurately and meaningfully. Base-Ten blocks? (Dienes, 1960) show
the values of the English words and of the positions of the written numerals.
Second graders of all ability levels who linked procedures with the blocks tightly
to procedures with the written numerals learned to add and subtract 4-digit
numbers, could justify their procedures (e.g., they never said that a raded-over |
was a one but said its actual value), and many generalized these procedures to
addition and subtraction of 10-digit numbers (Fuson, 1986a; Fuson & Briars,
1590).

The unitary sequence methods used to find single-digit sums and differences
can be extended to find 2-digit sums and differences: One can count up or count
down by ones to find 26 + 37, and many children mitially do this even though it
is time-consuming. One can also structure such counting by constructing tens
units within the counting, and can then count on, count up, and count down by
tens and ones (e.g., 47 + 35 is 47, 57, 67, 77, 78, 79, 80, 81, 82 or, separating
the values, 40, 50, 60, 70, 77, 78, 79, 80, 81, 82). Many children invent such
counting procedures to solve two-digit sums or differences not presented in
vertical form. Almost all invented procedures reported in the literature involve
such sequence procedures (Labinowicz, 1985). However, such procedures are
difficult for many children, and their counterparts for three- and four-digit num-
bers are difficult, because these sequence procedures do not generalize well to
general multidigit addition and subtraction. Therefore, educators in the United
States and FEurope, who use languages that are irregular for two-digit numbers,
- face a choice: (a) spend time allowing children to construct ten-unit items (count-

5A ones block is a cubic centimeter, a tens blockis 1 cm X 1cm x 10 cm, a hundreds block is 1
cm X 10 em X 10 ¢m, and a thousands block is 10 cm X F0 cm X 10 cm.,
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ing up and down by tens) within their sequence conceptual structures and use
these for solving two-digit addition and subtraction; later, shift to some other
support for named-value conceptual structures to add three-digit and four-digit
and larger numbers in a meaningfal way; or (b} move directly to supporting
children’s construction of named-value conceptual structures for three-digit
and/or four-digit numbers by using perceptual multiunit supports such as base-
ten blocks. The former seems to be done in the Netherlands: Second graders use
only mental methods of adding and subtracting two-digit numbers, and wriiten
multidigit addition and subtraction and three-digit numbers are delayed until
third grade (at least as reported by Beihuizen, 1985). Some U.S. educators
advocate supporting counting approaches for two-digit numbers, even if this
means delaying two-digit subtraction until third grade, because such subtraction
procedures are difficult for many second graders {e.g., C. K. Kamii, 1989). The
classroom base-ten block research by Fuson (1986a; Fuson & Briars, 1990)
suggests that alternative (b) leads to accelerated performance compared to alter-
native (a), similar to that shown by children in Asian countries (i.e., strong
multidigit competence for fourdigit numbers in second graders). These alter-
native educational paths will probably continue to be debated, and it will be
interesting to compare the paths for children in different countries.

Different mental and written algorithms (or repetitive procedures) are used to
add and subtract multidigit numbers in different countries. Some of these support
conceptual understanding better than others, and some are more efficient or
easier to carry out. For example, in the base-ten block studies (Fuson, 1986a;
Fuson & Briars, 1990), a subtraction algorithim was vsed in which any necessary
trading was done for all columns first, followed by single-digit subtraction for
each column; this eliminated the need to shift back and forth between a named-
value conceptual structure for trading and a unitary conceptual structure for the
single-digit subtraction (done by counting up from the known addend to the
known sum; Fuson, 1986b; Fuson & Willis, 1988). Korean children learn a
written subtraction algorithm in which they write a /0 above any column that
requires a ten traded over to subtract; this written /() supports both types of
single-digit subtraction methods structured around 10 (Fuson & Kwon, in press-
b). However, little research exists in English that compares children’s under-
standing using different algorithms and even less that relates aspects of an al-
gorithm to aspects of English number words that may make a given algorithm
easier or harder for children to understand.

OTHER CULTURAL SUPPORTS
FOR ADDITION AND SUBTRACTION

It is clear that systems of number words that are regular and that name the values
used in the system support, in many different ways, the construction of concepts
of number and facilitate the learning of addition and subtraction. Cultures also
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provide other experiences that can support or interfere with the construction of
number concepts structured around 10 and around multiples of 10. Most coun-
tries in the world use the metric system, which provides many examples of 1-
for-10 exchanges of value within and between different kinds of measures. Some
countries have systems of money that have regular 1-for-10 exchanges. A tradi-
tional calculator based on 10—the abacus—has had widespread use in many
Asian countries and in the Soviet Union. The United States has none of these
supports: the English system of measure, with its many irregular, non-10 trades
is still used, and the system of money has irregular intrusions of nickels and
quarters (5¢ & 25¢) and of $20 and $50, which interfere with the tens and ones
structure within the monetary system. Therefore, children in the United States
need considerable support from materials and special activities within the class-
room: in order to construct multiunit named-value or base-10 positional concep-
tual structures, and they often do not get that necessary assistance. Children in
other countries in North, Central, and South America and in Europe who speak
one of the irregular Eoropean systems of number words do at least have the
support of the metric system, but the systems of money in these countries vary in
how much they are structured only by tens. Whether and how various countries
choose to attempt to redress the linguistic disadvantage of their irregular number
words is an interesting question for future comparative research.

CONCLLUSION

This chapter has focused heavily on various consequences of the difference
between the regular named-value Asian number words and the irregular Euro-
pean number words. Of course, the superiority in mathematical performance of
lapanese and Chinese children over children in the United States (e.g., Stigler,
Lee & Stevenson, 1990; Stigler & Perry, 1988) is due to many factors other than
the systems of number words: more time spent in mathematics learning; higher
teacher status; more activities in the classroom using particular concrete mate-
rials, more focus on understanding, explanation, and alternative solution pro-
cedures; and more emphasis on the role of effort in childrens’, and parents’, and
teachers’ views of mathematics learning (see Fischer, 1991, for a review). Al-
though some of these cultural differences may be relatively difficult to change,
providing support to compensate for the irregularities in English number words
may be easier, and may result in considerable increases in children’s understand-
ing of numbers and of addition and subtraction. Our work with counting on and
counting up with one-handed finger patterns and with base-ten blocks indicates
that children in the United States can perform considerably more like Asian
chiidren, at least in single-digit and multidigit addition and subtraction situa-
tions.

Three different developmental paths through single-digit addition and subtrac-
tion have been identified here. These paths seem to be supported by different
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uses of fingers to show addition and subtraction. These different uses of fingers
may then lead to different addition procedures even when the numberword
sequences are similar {as English and Swedish are). Therefore, understanding
how children in a given culture construct concepts of, and procedures for, addi-
tion and subtraction may require knowing how that culture uses fingers to show
numbers, as well as knowing the structure of its number-word sequence. Explor-
ing how teaching children finger or number-word practices that support their
construction of useful concepts and procedures also seems likely to prove fruit-
ful.



