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The past 40 years have seen an explosion of research on numerical cognition and some 
research on how best to teach various numerical topics. It is now clear that children develop 
different methods for solving numerical problems and that these move from simple and 
slow to more advanced and rapid. Early on children worldwide go through a progression of 
levels of counting, adding, and subtracting. However, as the numerical topics become more 
advanced, and cultural symbol systems become more central, children’s methods increas-
ingly depend on what they are taught in school.

Research on children’s thinking and on methods they develop has often been carried out 
within a Piagetian perspective (e.g. 1965/1941). Research focused more on cultural symbol 
systems has often been carried out within a Vygotskiian perspective (Vygotsky, 1934/1986, 
1978). Fuson (2009) discussed extreme views of teaching that are sometimes drawn from 
a Piagetian view (‘learning without teaching’ that values only children’s invented methods) 
and from a Vygotskiian view (‘teaching without learning’ with a traditional emphasis on flu-
ency, rather than on meaning making). A balanced learning–teaching approach that relates 
these views was summarized in that paper. In this approach, called learning path teach-
ing, mathematically desirable methods that are accessible to children, and may have been 
invented by children, are linked to and explained using maths drawings or other visual ref-
erents to support meaning making. This approach enables all children to use general meth-
ods with understanding and move to fluency.

In this paper, we describe this balanced middle in more detail as the Class  Learning 
Path Model, provide examples in three maths domains that show different aspects of such 
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balanced learning-teaching, and then relate this view to past and present efforts to reform 
mathematics education in various countries. This approach allows us to exemplify major 
results on numerical cognition that affect mathematics education and to identify fruitful 
new directions for such research.

Teaching/Learning Within 
a Class Learning Path

The Class Learning Path Model integrates two theoretical foci – a Piagetian focus on learn-
ing and a Vygotskiian focus on teaching  – and specifies phases in learning that reflect 
Vygotsky’s assertion about children’s move from spontaneous to scientific concepts (this 
model is discussed in more detail in Fuson & Murata 2007; Fuson, Murata, & Abrahamson, 
2011; Murata & Fuson, 2006). Major aspects of the model were drawn from principles in two 
National Research Council reports on research on maths teaching and learning (Donovan &  
Bransford, 2005; Kilpatrick, Swafford, & Findell, 2001) and from the National Council of 
Teachers process standards (National Council of Teachers of Mathematics, 2000) in the 
United States. These reports and initiatives are based on intensive reviews of the research.

This model also draws from two other sources – research by the second author analys-
ing Japanese approaches to teaching (Murata, 2008, 2013) and results of a 10-year research 
and curriculum development project, the Children’s Math Worlds Project, directed by the 
first author. The project developed teaching materials, implemented them with teachers 
in a wide range of classrooms, and revised them in several cycles of revision. The materi-
als sought to find and stimulate student methods in the middle that would relate to tradi-
tional methods, but be easier to understand and to carry out. This project drew from and 
contributed to on-going research and research reviews (e.g. Fuson, 1992, 2003). It was pub-
lished as a Kindergarten through Grade 5 full maths programme Math Expressions (Fuson, 
2006) and now includes Grade 6 (2012). This programme contains a coherent sequence 
of research-based visual models and methods in the middle that do connect children’s 
invented methods with traditional methods along a learning path.

Mathematics education and cognitive research have many different terms. The lack of a 
shared language complicates communication efforts. However, considerable research has 
been reported as learning paths (trajectories, progressions) through which students move 
from basic and often informal understandings and methods to more formal, advanced, and 
fluent methods (e.g. Clements & Sarama, 2009, 2012). In Fuson et al. (2011), we sought to 
bring together various perspectives on understanding and fluency, provide a model of class-
room teaching/learning that included this learning path research, and provide language that 
would communicate across different kinds of research literature. We found the word ‘form’ 
to be a central unifying term. We characterized Piaget’s and Vygotsky’s conceptual activ-
ity as involving three types of external maths forms: situational (contextual), pedagogical, 
and cultural math forms (Piaget, 1941/1965; Vygotsky, 1934/1986, 1978). Each learner con-
tinually forms and re-forms individual internal forms (IIFs) that are interpretations of the 
external forms. This parallel use of the word forms links the external and internal forms, but 
emphasizes that each individual internal form may vary from the external form because the 
internal form is an interpretation. Doing maths is using individual-internal-forms-in-action 
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to form actions with external forms. Within a class learning path, each learner moves in a 
learning path from using informally-learned spontaneous forms to using explicitly-learned 
academic cultural maths forms (Vygotsky, 1934/1986). Such movement can be stimu-
lated within the classroom by teaching/learning that is inter- or intra-semiotic mediation 
(re-forming forms) via instructional conversations within class learning zones. Teaching 
(by the Teacher and by all of the students at some times) leads learners’ attention to aspects 
of the external forms and supports inter-forming them by:

Teaching: inscribing, speaking and gesturing about, and inter-forming external forms.
Learning: re-forming individual internal forms in response to teaching.

Such interactive cognizing over time leads to increasingly similar individual internal forms 
that can be taken-as-shared (Cobb & Bauersfeld, 1995). The individual forms become 
increasingly well-formed (correct and mathematically advanced), and they inter-form into 
networks of individual internal forms for the topic.

Vygotsky’s zone of proximal development is what an individual can learn with assis-
tance (1934/1986). We use the term class learning zone to mean what a given class can learn 
with the assistance of a teacher and of the pedagogical and situational external forms. 
Instructional conversations are possible because the external forms and the means of assis-
tance illuminating and inter-forming the external forms direct and constrain the possible 
individual internal forms that individuals create and use within the classroom forms-in-
action. Each student’s individual internal forms evolve within the class learning path toward 
a well-formed network of individual internal forms that can inter-form with other students’ 
networks, but still have idiosyncratic differences. This movement of individuals within the 
class learning path can be visualized as paths intertwining and coming closer within a cor-
ridor (Confrey, 2005) that overall looks more like a truncated cone as all class members 
inter-form their individual internal forms while cognizing interactively with assistance 
(Murata, 2013).

Notice that the whole learning path of methods can be elicited in Phase 1 or introduced 
early in Phase 2 (these methods are labelled as at Level 0, 1, and 2 in Table 55.1). The class-
room instructional conversations support individualized instruction within whole-class 
activity as the methods of all students appear and are discussed. Diversity can be accepted 
and used to increase understanding by all, but the Class Learning Path model also assumes 
and makes possible the realization of high academic expectations by the early introduction 
and support of visual models and methods in the middle (Murata, 2013).

The four phases in the Class  Learning Path model came from earlier work reported 
in Murata and Fuson (2006), Fuson and Murata (2007), and Murata (2008) that used 
research-based principles from NRC reports and the NCTM Process Standards to justify 
the parts of the model (see Box 54.1). The model itself was drawn from our on-going work 
describing common features of two kinds of classrooms that both used this model – those 
in the Children’s Math Worlds/Math Expressions classrooms and in Japanese classrooms. 
Box 54.1 provides crucial detail that relates to student numerical cognizing, and provides a 
fuller view of classrooms in action that support and advance student cognizing.

An early version of these four phases was presented at a conference with Japanese 
maths educators (Lewis & Takahashi, 2006) to frame a requested discussion of the 
‘maths wars’ in the United States. The response of the Japanese educators was that they 
use the same four phases in their elementary maths curricula. Japanese teachers’ manu-
als that accompany elementary mathematics textbooks generally outline and describe 
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these phases. We use here translations of these terms by Murata (2008) for the first three 
phases in Table 55.1 and Box 55.1 – guided introducing, learning unfolding, and kneading 
knowledge.

Aspects of Table 55.1 and Box 55.1 obviously relate to many other theoretical and research 
perspectives. Some of these are discussed in the reports from which aspects were drawn, 
and some in the longer papers about this model (e.g. Gal’perin’s instructional framework is 
discussed in Murata (2008), and the internalizing and abbreviating movement from ‘speech 
for others’ to ‘speech to self ’ is discussed in the Fuson/Murata papers). We will mention here 
the importance of Case’s neo-Piagetian framework as it undergirds the notion of learning 
paths as building another step onto a method that has become more fluent and of Case’s 
educational work identifying bridging contexts as meaning-making supports (e.g. Case, 

Table 55.1 Four Phases in the Class Learning Path to Well-Formed Networks 
of Individual Internal Forms

Solution Method or Situation Form by Level at Each Phase

Phase 1 Guided Introducing: Eliciting Individual Internal Forms and Forming Initial Forms-in-Action

Level 0 Level 1 Level 2

unformed basic & slow a) mathematically-desirable & accessible 
(MD&A)

typical errors b) mathematically-desirable & not 
accessible (often current commona 
methods)

Phase 2 Learning Unfolding: Forming Well-Formed Individual Nets-For-Action (Major 
Meaning-Making Phase)

Level 0 Level 1 Level 2

MD&A methods dominate and errors 
decrease

Phase 3 Kneading Knowledge: Major Fluency Phase for Fast-Forms-in-Action

Level 0 Level 1 Level 2

Each student fast-forms one Level 2 
(mathematically desirable) method; many 
students inter-form ≥2 methods.

Phase 4 Maintaining Fluency and Relating to Later Topics: Remembering Fluent Methods and 
Re-Forming Individual Nets-For-Action

Level 0 Level 1 Level 2

Each student remembers and maintains 
Phase 3 performance.

a The current common method sometimes is mistermed “the standard algorithm” but should be 
considered as one variation of the standard algorithmic approach, which uses the major ideas of the 
method.



Box 55.1 NRC principles and NCTM Standards Summarize the Class Learning 
Path Model

Overall: Create The Year-Long Nurturing Meaning-Making Maths-Talk 
Community

	 •	 The	 teacher	 orchestrates	 collaborative	 instructional	 conversations	 focused	 on	 the	
mathematical thinking of classroom members (How Students Learn Principle 1 and 
NCTM Process Standards: Problem Solving, Reasoning & Proof, Communication).

	 •	 Students	and	the	teacher	use	responsive	means	of	assistance	that	facilitate	learning	
and teaching by all:  engaging and involving, managing, and coaching:  modelling, 
clarifying, instructing/explaining, questioning, and feedback.

For Each Maths Topic: Use Inquiry Learning Path Teaching–Learning

The teacher supports the meaning-making of all classroom members by using and assist-
ing students to use and relate (inter-form) coherent mathematical situations, pedagogi-
cal forms, and cultural mathematical forms (NCTM Process Standards:  Connections & 
Representation) as the class moves through four class learning zone teaching phases.

Phase 1  Guided Introducing

Supported by the coherent pedagogical forms, the teacher elicits and the class works with 
understandings that students bring to a topic (How Students Learn Principle 1).

 (a) Teacher and students value and discuss student ideas and methods (they inter-form 
the individual internal forms-in-action using external forms).

 (b) Teacher identifies different levels of solution methods used by students and typical 
errors and ensures that these are seen and discussed by the class.

Phase 2  Learning Unfolding (Major Meaning-Making Phase)

The Teacher helps students form emergent networks of forms-in-action (How Students 
Learn Principle 2):

 (a) Explanations of methods and of mathematical issues continue to use maths draw-
ings and other pedagogical supports (external forms) to stimulate correct relating 
(inter-forming) of the forms.

 (b) Teacher focuses on or introduces mathematically-desirable and accessible method(s).
 (c) Erroneous methods are analysed and repaired with explanations.
 (d) Advantages and disadvantages of various methods including the current common 

method are discussed so that central mathematical aspects of the topic become 
explicit.
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1991; Case & Okamoto, 1996). Our framework highlights the need for coherence within all 
maths programmes so that they can build systematically and the need for sufficient work to 
prepare children to have understandings required for simple Level 1 solution methods for 
Phase 1 before methods are elicited.

The Importance of Maths Drawings 
Linked to Mathematically-Desirable 

and Accessible Methods

MD&A Methods, and Extended Phase 2 Instructional 
Conversations

Phase 1 is emphasized in reform curricula  – eliciting and discussing children’s invented 
methods and focusing on understanding. Traditional curricula emphasize Phase 3 to focus 
on fluency. The new important part of the model is Phase 2 that connects Phase 1 and Phase 
3, and provides deep and ambitious learning. As students compare, contrast, and analyse 

Phase 3  Kneading Knowledge (Fluency)

The Teacher helps students gain fluency with desired method(s):

	 •	 Students	may	choose	a	method.
	 •	 Fluency	includes	being	able	to	explain	the	method.
	 •	 Some	reflection	and	explaining	still	continue	(kneading	the	individual	internal forms)
	 •	 Students	stop	making	maths	drawings	when	they	do	not	need	them	(Adding It Up: flu-

ency & understanding).

Phase 4  Maintaining Fluency And Relating To Later Topics

The teacher assists remembering by giving occasional problems and initiates and orches-
trates instructional discussions to assist re-forming individual internal forms to support 
(form-under) and stimulate new individual internal-nets-for-action for related topics.

Result: Together These Achieve The Overall High-Level Goal For All

Build resourceful self-regulating problem solvers (How Students Learn Principle 3) by con-
tinually intertwining the 5 strands of mathematical proficiency:

	 •	 Conceptual	understanding.
	 •	 Procedural	fluency.
	 •	 Strategic	competence.
	 •	 Adaptive	reasoning.
	 •	 Productive	disposition	(Adding It Up).
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(inter-form) different methods in Phase 2, core maths concepts can be lifted up from the 
problem contexts or specific methods and connected (inter-formed within their individual 
internal forms). Coherent pedagogical forms (and especially the mathematically-desirable 
and accessible methods and maths drawings) enable students to inter-form their external 
forms to foster the growth of increasingly well-formed (culturally adapted and taken-as-
shared) individual internal forms.

The word inquiry in inquiry learning-path teaching–(learning) is used here primarily in 
the sense of problematizing all topics (Freudenthal, 1983; Hiebert, Carpenter, Fennema, 
Fuson, Murray, Olivier, et al. 1996). Students are to approach all topics with inquiring minds, 
seeking to understand and to share their own thinking with classmates. Inquiry learning 
path teaching–learning for a given topic requires coherent mathematical situations, peda-
gogical forms, and cultural maths forms for a given topic to assist students in attuning their 
emergent individual networks-in-action through learning paths to well-formed networks of 
individual internal forms.

Phase 2 is the heart of this process, as the class focuses on and discusses 
mathematically-desirable and accessible (MD&A) methods with the help of some kind 
of visual supports for meaning-making. A major research result of the 10 years of class-
room research underlying Math Expressions was the importance of maths drawings (vis-
ual models, diagrams) as pedagogical forms to support individual thinking and problem 
solving and instructional conversations (such Maths Talk is discussed in more detail 
in Fuson, Atler, Roedel, & Zaccariello, 2009; Hufferd-Ackles, Fuson, & Sherin, 2004). 
Maths drawings facilitate problem solving because students can relate steps in the maths 
drawing to steps with maths symbols (cultural maths external forms) and can label the 
drawing to relate to the problem situation or to maths concepts (e.g. tens). These draw-
ings can help bridge problem situations with mathematical solutions through mathema-
tizing (Murata & Kattubadi, 2012). Maths drawings assist instructional conversations 
because they can be put on the board for all to see and leave a trace of all steps in the 
thinking, so each step can be explained. They are inexpensive, easy to manage, can be 
used on homework, and remain after the problem is solved to support reflection and fur-
ther explanation. Teachers can collect pages containing them and reflect on these win-
dows into the minds of students outside of the class time. Many East Asian elementary 
maths programmes also have a history of using diagrams, as do some other countries 
around the world. Maths drawings initially can show all of the objects and later they can 
be diagrams with numbers in them. An initial phase of concrete objects may be helpful 
for very young children or for some special needs children, but for many maths topics 
this can be very short or non-existent.

We exemplify now coherent sets of visual models and the mathematically-desirable 
and accessible methods for two crucial domains of the elementary school content  – 
problem-solving and multidigit computation. These are drawn from the extensive 
classroom-based design research of Math Expressions. These examples permit the reader to 
get some sense of how student cognizing has become the centre of new visions of teaching 
and learning. The research on these domains is vast and cannot be summarized here, nor 
can the methods or models be discussed in detail (for more details, see the Clements and 
Sarama, the Fuson, and the NRC reports referenced above and the Fuson, 2013, professional 
development webcasts for various topics listed under projects on https://www.sesp.north-
western.edu/profile/?p=61).
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Diagrams For Representing Problem Situations
There is a large international research base about representing and solving word prob-
lem types as the bases for understanding of operations (+, –, ×, ÷). Learning paths of dif-
ficulty have been identified that depend on the problem types and the particular unknown. 
Algebraic problems are those where the situation equation, such as ☐ + 4 = 9, is not the same 
as the solution equation, 4 + ☐ = 9 or 9 – 4 = ☐. Students can also work in kindergarten with 
forms of equations with one number on the left (e.g. 5 = 2 + 3 and 5 = 4 + 1) as they decom-
pose a given number (here, 5) and record each decomposition by a drawing or equation. 
Experience with these various forms of equations can eliminate the typical difficulty many 
students have with equations in algebra, where their limited experience with one form of 
equation leads them to expect only equations with one number on the right.

Figure 55.1 shows the final pedagogical forms used in Math Expressions to represent 
(form) the situations (for more details about these drawings, see Fuson & Abrahamson, 
2012). The diagrams support a student with algebraic problem-solving – represent the sit-
uation by making a diagram and then use the numerical relationships in that diagram to 
find the solution. The diagrams are the Phase 2 MD&A methods in the middle for algebraic 
problem-solving. They have moved beyond students’ Level 1 maths drawings that show all 
of the objects, and they are not yet algebra, which uses only an equation to represent the 
situation. These diagrams bridge these two levels and give students extensive experience 
with writing, understanding, solving, and explaining/discussing situation equations like  
☐ – 538 = 286 or 5/7 = 2/7 + ☐.

Seeing the diagrams together shows their coherence, e.g. equal group situations arise 
from add to/take from or put together/take apart situations when an addend is a group that 
is added repeatedly, and additive comparisons likewise become specially restricted as mul-
tiplicative comparison situations. Figure 55.1 shows how different situations actually involve 
different meanings of the equals sign, indicated at the bottom of each cell. This single set of 
diagrams can be used for all of the quantities students experience through Grade 6 (from 
single-digit numbers through fractions and decimals) and for many multi-step problems. 
They thus also support Phase 4 connections among problem situations as students move 
through the grades.

Maths Drawings and MD&A Methods for Multidigit Computation
Understanding multidigit computation requires understanding the nature of the numbers 
involved. There is considerable research on ways to show the meanings of multidigit numbers 
and on different methods of computing. Continual reviewing of such research from around 
the world, and classroom-based research into supports and methods invented in our Children’s 
Math Worlds classrooms, were carried out for many years. Mathematically-desirable methods 
were then tested with a range of students and teachers in other classrooms to find out how 
easy they were to understand and carry out. The final Math Expressions research-based maths 
drawings (in the left column) and MD&A methods for multidigit addition, subtraction, multi-
plication, and division are shown in the middle column of Figure 55.2. These methods were all 
invented in classrooms and are described in more detail in Fuson (2003), in National Council 
of Teachers of Mathematics (2010, 2011), and in the Number and Operations in Base Ten pro-
fessional development webcasts listed under Projects on https://www.sesp.northwestern.
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edu/profile/?p=61. Related pedagogical forms that support the meaningful development and 
use of the quick-hundreds, quick-tens, and ones and of the area models are also discussed 
in these resources. Students inter-form the drawings with the written methods (link them 
step-by-step) so that the cultural maths place-value symbols take on meanings as hundreds, 
tens, and ones. Students use such place-value language in their explanations to support this 
inter-forming. We found that some students want the extra support within a written method 
of the expanded notation forms that show the place values separately. Three of the MD&A 
methods show such expanded notation.

Quantity model 
New groups

below  
Write all

totals 

Current common 
New groups

above 

Ungroup everywhere 
rst,
then subtract everywhere

R      L Ungroup,
�en subtract,
ungroup, then

subtract
13

1632

3 4 6 
–  1 8 9

1 5 71 5 7 

1 8 9 
+  1 5 7 

3 4 6 
1 1

10

100

1 8 9 
+  1 5 7 

2 0 0 
1 3 0 

1 6 

3 4 6 

1 8 9 
+  1 5 7 

3 4 6 

11

Area model 
Rectangle
sections

Le�       Right Right       Le� 

Expanded notation Short–cut

4 3
x  6 7

3 0 1

2 8 8 1

2 5 8

Rectangle sections Expanded notation Digit by digit 

4 3 

6 7   2 8 8 1

2 0 1

–  2 0 1

–  2 6 8 

16
13
142

3 4 6 
–  1 8 9 

1 5 7 

16
13
32

3 4 6 
–  1 8 9 

3

7

60

40

2400

280

180

21

+

+

1
2

       40          +          3    = 43

67

201 0

2881
2680–

201
201

2 4 0 0 
1 8 0 
2 8 0 

+        2 1 

2 8 8 1
1

4 3  =  4 0  +  3 
x  6 7  =  6 0  +  7 

6 0  x  4 0  =  2 4 0 0 
6 0  x     3  =     1 8 0 

7  x  4 0  =     2 8 0 
7  x     3  =        2 1 

2 8 8 1
1

3

4 0
6 7   2 8 8 1 

–  2 6 8 0

2 0 1

–  2 0 1

4 3

Figure 55.2 Mathematically-desirable and accessible algorithms and diagrams.
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The mathematically-desirable and accessible methods in the middle use the standard 
algorithmic approach, but write the steps in different places or ways than in the current 
common form of that approach. The term ‘the standard algorithm’ actually refers to the 
major mathematical features of the process and not to the details of how these are written. 
Thus, all of the methods in Figure 55.2 can be called ‘the standard algorithm’ for purposes of 
goals that require such use. Phase 2 instructional conversations focusing on how the meth-
ods are alike and different help students understand the big ideas involved, and that these 
ideas can be written in different ways.

The versions in the middle are more accessible than are the current common forms in the 
right column. For example, the addition and subtraction methods in the table all add/sub-
tract like units (place values) and group/ungroup between adjacent place-value units where 
needed. However, New Groups Below is easier than New Groups Above because:

	 •	 The	2-digit	totals	can	be	seen	more	easily.
	 •	 The	new	one	ten	or	one	hundred	waits	below,	so	you	add	the	two	numbers	you	see	and	

then add the new group if needed.
	 •	 You	write	the	totals	in	the	usual	order	(e.g.	1	ten	6	ones,	not	as	6	ones	then	1 ten).
	 •	 and	you	do	not	change	the	problem	by	writing	numbers	up	within	it,	instead	of	down	

at the bottom.

The subtraction method allows students to keep using one operation (ungrouping) and then 
change to subtracting, rather than alternating ungrouping and subtracting, which is more 
difficult. The area model organizes the multiplications, and the expanded notation method 
has supports to align like place values, see the places in the multiples, and remember which 
products one has done.

Expanding Cultural Maths Forms to Become Pedagogical Forms
A final example shows how cultural maths forms can take on meanings by being 
inter-formed with situations, and how they can be extended or abbreviated by students and 
by design researchers to become pedagogical forms inter-formed with both situations and 
cultural maths forms. Figure 55.3 presents the major forms and situations used in a unit on 
ratio and proportion for fifth graders (Abrahamson, 2003; Abrahamson & Cigan, 2003; 
Fuson & Abrahamson, 2005). Because many proportion errors involve students adding 
instead of multiplying, we wanted to ground the topic firmly in multiplication. We did this 
by inter-forming ratio tables and 2 × 2 proportion forms with the multiplication table and 
with basic ratio incrementing stories, such as how the money in the banks of two siblings 
increased by $3 (for Robin) and by $7 (for Tim) a day. Students enacted this story by succes-
sive additions that they recorded in separate ratio tables and also in a joint ratio table with 
a connecting row on the left that showed the day (the unit that linked the successive ratios). 
All of these columns could be seen by students and were also discussed as columns from the 
multiplication table. A proportion was any two ratios from this story, which could be seen 
as (inter-formed as) two rows from the multiplication table and also from the linked ratio 
table. A Factor Puzzle was a proportion with one unknown value; factors of its rows and col-
umns could be identified to find the unknown value.
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Most of these forms were very close to the cultural maths forms, but could be considered 
as pedagogical in that they had something extra to support meaning making. Students also 
abbreviated forms in problem solving, for example, by skipping rows in a ratio table to fill in 
the second ratio in a proportion, thereby leading to the discovery that they could just mul-
tiply and did not have to write all of the intervening rows in the ratio/multiplication table. 
Students inter-formed all of the forms through language and gesture in instructional con-
versations (Fuson & Abrahamson, 2005). Such inter-forming helped students move from 
their Phase 1 repeated-addition solutions involving filled-in ratio tables to use of Factor 
Puzzles to solve proportions by multiplication and division inter-formed by finding rows 
and columns of the multiplication table. The pedagogical forms support MD&A methods 
for the whole-number problems given at this age level, and they provide a basis for extend-
ing to the general unit ratio and cross-multiplication methods needed for problems with 
fractions (some examples are in Abrahamson, 2004).

We have only shown examples of three major school maths topics. While the three-phase 
model unit can last over weeks for such major topics, some minor topics may require only 
one or two lessons for the three phases. Geometry, measurement, and data topics also can 
use maths drawings and MD&A methods. For example, sketching a rectangle and filling in 
the measures of all four sides can help students find perimeters. When students can remem-
ber to use all four sides, they can drop the measures of two adjacent sides to show the usual 
way perimeter problems are presented.

Learning Path Teaching–Learning 
Takes Time and Support

As students invent support steps toward making sense of the cultural and pedagogical 
forms, they recruit individual internal forms that initially may be fragile and not involve any 
inscribed forms, but only verbal and gestural utterance, such as idiosyncratic metaphorical 
constructions (Abrahamson, Gutiérrez, & Baddorf, 2012). At this stage, attentive teachers 
should ‘listen’ very closely (Confrey, 1991; Davis, 1994) and support these fledgling formula-
tions, because they may enable more students to evoke and inter-form similar individual 
internal forms and, thus, bring the whole class to bridge and adapt their respective individ-
ual internal forms to the external forms.

The extended inter-forming of coherent pedagogical and cultural maths forms, especially 
with the support of maths drawings within instructional conversations, allows students to 
build well-formed, but individual networks of individual internal forms that allow students 
to be adaptive. There are always creative student variations discussed in Phase 2 and even in 
Phase 3. Students create forms close enough to the mathematically-desirable and accessible 
methods and maths drawings in Figures 55.1 and 55.2 to be taken-as-shared by their class-
mates, but there is often individual creativity that adds interest and depth to the instruc-
tional conversation and to the continually inter-forming networks of individual internal 
forms for all class members including the teacher.

Some mathematically-desirable and accessible methods have extra support steps that can 
be dropped when they are no longer needed. For example, the partial products multiplication 
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method in Figure 55.2 was invented by a class of low-achieving African–American students 
who wanted to put in all of the steps any student needed. Later many of them selectively 
dropped various supportive steps (‘learner wheels’), just as students stop making maths 
drawings when they no longer need them. Pedagogical forms assist meaning-making for the 
cultural maths forms provided these are actively inter-formed within the student’s network 
of individual internal forms. At some point for each student, the pedagogical form no longer 
needs to be used because the student’s individual internal forms stimulate that meaning-in-
action for the cultural maths forms (e.g. Abrahamson, 2002).

The class learning path simplifies the teacher’s task to something that teachers perceive as 
do-able, especially if supported by a learning path programme. The teacher’s task is not the 
commonly-perceived reform task of celebrating every student’s methods and continually 
eliciting more ways. This can be overwhelming to teachers who think there are as many ‘dif-
ferent’ methods as the number of students (Murata, 2013). We instead use a big picture of the 
three levels of solution methods shown in Table 55.1: Level 1 basic and slow, Level 2a MD&A, 
and Level 2b mathematically-desirable and not accessible. These levels help teachers see cer-
tain methods as minor variations of each other and to place these within the phases of teach-
ing a topic.

Learning Path Teaching–Learning requires 
Coherent External Forms

The teacher and (student) teachers ‘tune’ learners’ individual internal forms toward the 
external forms and toward the more-advanced methods with the assistance of the pedagogi-
cal forms (similar to diSessa’s tuning toward expertise in physics, 1993). Pedagogical forms 
need to be selected or designed to illuminate the central mathematical aspects of the cul-
tural maths forms by their affordances and constraints (their attunements, Greeno, 1998). 
Such tuning takes time and much inter-forming by gesture and language by the teacher and 
students. Students’ networks of individual internal forms have layers from less-advanced to 
more-advanced individual-internal-forms-in-action, and they may fold back (Martin, 2008; 
Pirie & Kieren, 1994) to a lower level to inter-form and make more meaningful a higher 
level. Because mathematics builds, the situational and pedagogical forms need to be coher-
ent so that children can move among their layers of understanding easily. Our situational 
diagrams that work across all kinds of quantities is one such example. The use of the same 
quantity drawings for multidigit numbers in addition and in subtraction is another exam-
ple. Methods in the middle that can extend from children’s invented methods and relate 
to difficult formal maths methods require careful analysis and classroom research to reach 
coherence for teachers and for children. Pedagogical forms such as secret-code cards (lay-
ered cards that show 374, but with 300 under 70 under the 4) that compensate for difficult 
cultural forms such as English words for teens and tens are an important part of such analy-
sis and research (see National Council of Teachers of Mathematics, 2011).

The extensive and excellent Dutch programme of research on Realistic Mathematics 
Education (e.g. Gravemeijer, 1994; Streefland, 1991) that extends Freudenthal’s theory 
(e.g. Freudenthal, 1983) shares many features with the model proposed here. Our model 
does suggest a further examination of the coherence of that programme’s situational and 
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pedagogical ‘models of ’ within and across topics, and raises the possibility that students 
might move to Phase 2 general methods in the middle more rapidly.

Using Research on Student Cognition for 
Mathematics Education

Initiatives have arisen in many countries to adapt mathematics education to reflect the 
research on student learning and to prepare students for the demands of lives infused 
with technology. Many of these initiatives have reflected the long-term perceived conflict 
between understanding and fluency, with emphases either on student inventing of methods 
or on traditional teaching of formal methods by teacher telling and showing (this conflict 
has been termed the ‘maths wars’ in the USA and some of these over-emphases are discussed 
in Fuson, 2009). We have seen here that there is a research-based middle ground: students 
can understand general methods and do not have to be limited to special methods that arise 
from particular numbers or from particular situations. This does raise questions about what 
seems to be a strong emphasis on such special methods in the National Numeracy Strategy 
in English primary schools (Askew & Brown, 2001; Vollaard, Rabinovich, Bowman, & van 
Stolk, 2008). A related emphasis in some countries on mental computation likewise seems 
too strong, especially if the methods cannot be written down by students. Such methods 
are often restricted to smaller numbers and do not generalize easily (e.g. methods of adding 
on or back for multidigit numbers; for more discussion of limitations of such methods, see 
National Council of Teachers of Mathematics, 2011; Fuson & Beckmann, 2012/2013). Our 
experience is that children are empowered by general methods they can understand and 
explain. Recording methods using place value notation is a core aspect of mathematics and 
can be done as early as age 7 if approached in the ways outlined in our model. However, it 
is also important to examine the form of the written methods that are to be taught because 
there may be variations that are easier for students to understand and/or to carry out.

A recent such initiative in the United States reflects this middle ground and heav-
ily uses the research on cognition. There has been a special difficulty in the United States 
because different teaching/learning standards are adopted by each of the 50 states. There 
has been huge variation in the standards across states that led to characterizing the maths 
goals in the United States as ‘a mile wide and an inch deep’ (Schmidt, McKnight, & Raizen, 
1997). Textbooks were enormous, and massive amounts of time and energy were spent on 
what to teach instead of how to teach it well. The new coherent teaching/learning stand-
ards, the Common Core State Standards (CCSSO/NGA, 2010), are based on research and 
were adopted by most states. The standards reflect research and curricula from around the 
world, and are the result of an intensive, prolonged feedback and revision period from many 
sources. Thus, they reflect a negotiated balance of views about how to fit together learning 
paths in various domains.

For example, the Common Core State Standards operations and algebraic thinking stand-
ards lay out an ambitious learning path with word problem types as the bases for under-
standing of operations (+, –, ×, ÷). The standards identify grade-appropriate levels at which 
students work with the various problem types and with unknowns for all three of the quan-
tities. The standards appropriately specify that students use drawn models and equations 
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with a symbol for the unknown number to represent the problem (situation equations, such 
as ☐ + 6 = 14). Thus, from grade 1 on students will have crucial experience with the more dif-
ficult algebraic problems (those in which the situation equation might vary from a solution 
equation, such as 6 + ☐ = 14 or ☐ + 6 = 14 for the situation equation 14 – 6 = ☐).

The Common Core State Standards drew from design-research and learning path 
research to include within standards the requirement that students are to use visual models, 
relate these to the problem situation or to the steps in a computation, and explain the reason-
ing used. For most numerical topics this meaning-making phase is one or two years ahead 
of the standard that calls for fluency, thus using phases that extend over years. These Phase 
2 methods discussed above and shown in Figure 55.2 meet the more-advanced Common 
Core State Standards that students are to develop, discuss, and use efficient, accurate, and 
generalizable methods including the standard algorithm (for more see Fuson & Beckmann, 
2012/2013). For more about features of these standards see Fuson (2012).

The Common Core State Standards emphasize the Maths Talk aspect of teaching-learning 
with eight Mathematical Practices that can be summarized in four pairs of practices:

	 •	 Math Sense-Making (MP 1 and 6): make sense and use appropriate precision.
	 •	 Math Structure (MP 7 and 8): see structure and generalize.
	 •	 Math Drawings (MP 4 and 5): model and use tools.
	 •	 Math Talk (MP 2 and 3): reason and explain.

This can be summarized as: Do math sense-making about math structure using math 
drawings to support math talk.

General Conclusion and 
Call for Future Research

In conclusion we assert that it is the responsibility of a research-based maths programme to 
provide:

 (a) In Phase 1 the situations or pedagogical forms (especially maths drawings) to stimu-
late students’ and Teacher’s individual internal forms meaningfully toward the exter-
nals forms, and to have stimulated and practiced well-formed enough individual 
internal forms in earlier units before reaching Phase 1 for a topic.

 (b) In Phase 2, the curriculum must provide to teachers research-based MD&A methods 
and pedagogical and/or situational forms to assist students to build well-formed indi-
vidual internal forms that can assist them in using meaningful cultural maths forms.

 (c) Pedagogical and formal maths external forms must be explained enough in the pro-
gramme so that teachers can assist students to progress in their learning paths.

Point (c) is important because many teachers have not had sufficient opportunity to learn 
maths meaningfully themselves or to learn about student learning paths. They need the 
assistance of the coherent supports within Phase 1 and Phase 2 to form their own individual 
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internal forms to teach with meaning. In our experience, teachers enthusiastically welcome 
the opportunity to learn meaningful maths and to use a ‘teach while learning’ approach. 
One group of pilot teachers articulated such feelings by calling the Children’s Math Worlds 
programme ‘maths therapy for teachers.’

Teachers’ experiences vary considerably on the whole continuum of experiences from 
very constructivist to traditional. The Class Learning Path Model enables any Teacher to 
begin from initial strengths s/he has and to build new teaching–learning competencies as s/
he moves along her/his own learning path. All teachers find phases within which they ini-
tially feel comfortable. They all gain confidence and knowledge from the learning supports 
in Phase 2. As they experience the Class Learning Path Model of teaching, they build com-
petencies and understandings (individual internal forms about maths and about teaching) 
that enable them to use a more balanced approach to teaching in the following year.

The cultural maths forms for a topic are fairly well defined for a given culture, and there is 
relatively little variation in these around the world. What is and can be varied to affect learn-
ing are the situations, pedagogical forms including especially maths drawings and MD&A 
methods, and the sequence of problems and activities. More research and dialogue about 
the external teaching forms (situations, pedagogical, and cultural maths forms) would be 
beneficial. This dialogue needs to focus on the mathematical aspects of the learning paths 
(e.g. which methods are mathematically desirable?), as well as on data about them (e.g. How 
did the pedagogical forms work? How could they be made more coherent across topics 
and grades?). In many countries, an initiative to modify difficult forms of standard algo-
rithms and other solution methods to mathematically-desirable forms more adapted to stu-
dent cognizing would make mathematics education more successful and help students and 
teachers believe that mathematics is understandable.
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