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Chapter 2

RELATIONSHIPS CHILDREN CONSTRUCT AMONG
ENGLISH NUMBER WORDS, MULTIUNIT BASE-TEN
BLOCKS, AND WRITTEN MULTIDIGIT ADDITION

Karen C. Fuson, Judith L. Fraivillig & Birch H. Burghardt
Northwestern University

Introduction and background

Arithmetic has arisen in many different cultures as a way to solve problems
concerning quantitative aspects of real world situations. These quantitative aspects
are described by words and, in many cultures, by marks that are written on some
surface. In traditional cultures children learn arithmetic by observing and
eventually using the quantitative words and written marks in their situations. In
modern cultures, however, children are taught the arithmetic of single-digit whole
numbers, multidigit whole numbers, integers (negative numbers), decimal fractions,
and rational numbers. In much of this teaching, children do not learn to talk and
write about quantitative aspects of real world situations, but rather stay within the
arithmetic marks world and memorize sequences of written marks steps (routines)
to accomplish each operation for each kind of number.! For too many children,
this approach results in a verbal superstructure of hierarchical routines unrelated
to anything. As a result, there is massive interference among the routines.
Children have no way to reconstruct or verify forgotten routines and even no belief
or expectation that one could do this, and they have poor ability to apply these
routines to real world situations. Problem solving is often conceptualized only as
the need to select and carry out the correct routine, and children have few ways
to estimate answers to decide if an answer is sensible (e.g., Fuson, in press-a, in
press-b). Before machine calculators were invented, there was a considerable need

! The term written "marks" is used instead of the more usual term "symbol” in order to remind
the reader continuously that for children, and any mathematical novices, the written mathematical
squiggles are arbitrary and contain few cues to their referents in the real world. For adults and
mathematical experts these meanings are so automatic that it is very difficuit for us to remember and
appreciate how arbitrary these written marks are.
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for human calculators, so the school emphasis on producing human calculators,
with its restricted calculator arithmetic focus, was understandable and probably
even sensible. With the worldwide availability of inexpensive hand-held calculators,
the need has shifted to humans who can apply and use these machines in real
world situations and even in future situations not yet known. The need is now for
meaningful arithmetic that can be related to real-world situations.

Meaningful arithmetic requires that quantitative operations on mathematical
words and written marks be connected to real-world referents (objects or
situations) in order for children to have an opportunity to understand the meanings
of these operations (i.e., to see the attributes of their real-world referents).
Various pedagogical objects have been invented and used in mathematics teaching
for this purpose. For example, fraction pies, fraction bars (rectangles), or fraction
strip divided into different numbers of units are used to consider various aspects
of fractions. Studies have been carried out concerning the relative efficacy of
learning with and without these pedagogical objects. However, the efficacy of a
particular pedagogical object is limited by the extent to which it does actually
present in its salient physical features the mathematical domain for which it is
used. There has been little serious analytical research that has attempted to define
the mathematical attributes of the written marks and spoken words used in a
particular mathematical domain or to suggest the kinds of pedagogical objects that
would present these needed attributes. Such an analysis is required for the
necessary next step: The empirical investigation of the ease with which children
can make links among written marks, spoken words, and pedagogical objects and
use these links to construct full and correct conceptual structures for these marks
and spoken words and for operations on them.

Such analytical research is complicated by the fact that the words and the
written marks used to describe the mathematical entities may have different
structural characteristics as well as some structural characteristics that are alike.
Full understanding of the mathematical concepts being symbolized in verbal and
written form may only be possible if both the system of words and the system of
written marks are understood. The words and marks each fall along a positive to
negative continuum, the positive side of which ranges$ from cueing many to cueing
no important features of the symbolized concepts and the negative side of which
ranges from containing no misleading features to containing many misleading
features. For example, Chinese words for fractions convey more of the underlying
fraction meaning than do English words: One says 3/5 as "out of five things three"
in Chinese and “three fifths" in English. The word "fifths" conveys no sense of a
fraction or of a ratio meaning and is even misleading because it is the same word
used for the ordinal number meaning (fifth in the race, number five in an ordered
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sequence). The Roman numeral VIII reflects the fiveness in a hand (the V-shape
of the thumb and other fingers) plus three more fingers to make eight, whereas
the Arabic numeral 8 contains no cues to its eightness. Multidigit numerals (e.g.
8625) are misleading because they look like adjacent single digits; no feature
suggests that they tell how many tens, hundreds, and thousands or even that they
involve such multiunits (larger units formed from multiple smaller units).
Fractions similarly just look like two single digits separated by a line (3/5), thus
seducing children into adding, subtracting, multiplying, and dividing these single
digits as a way to carry out these operations on fractions (they are actually correct
for two of these operations, thus giving partial reinforcement to this single-digit
approach). Analyses of the structural characteristics of a mathematical domain
and empirical investigations based on such analyses are needed. These can
examine how the words and written marks used for a given mathematical domain
appear on this continuum and explore how these supportive and misleading
features may help or hinder children’s learning,

This chapter presents such an empirical investigation in the domain of multidigit
addition and subtraction. This investigation and the analyses presented here are
based on an analysis of this domain presented in Fuson (1990a). This analysis is
briefly summarized here in the next several paragraphs to provide a context for the
chapter; the parts of the analysis concerning numbers larger than four digits and
conceptual structures beyond those needed for multiunit addition are not
summarized here because this investigation was limited to these areas.

Conceptual analysis of multidigit number marks and number words

English multiunit words and the usual multidigit marks have some features in
common. Any system of words or written marks expresses large numbers of single
units by combining several different larger multiunits (chunks of single units).
English words and base-ten written marks both use the same multiunits based on
powers of ten: Each multiunit consists of ten of the next smaller multiunit. Each
of these systems also uses nine different symbols (words or marks) to denote the
first nine numbers and then also uses these same nine symbols to tell how many
of each multiunit there are. Words and marks also differ in important ways.
Written marks require the perception of a visual layout of horizontal "slots" or
positions into which any of the nine number marks can be placed, whereas English
words require learning special multiunit words (thousand, hundred, ten) that are
each prefaced by any one of the nine number words. English words immediately
say the largest multiunit, but one has to look at the number of places in written
marks to decide the value of the largest position.
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Associations between these two systems enable translation between them. The
first association is between the nine number words and the nine written marks
(e-g., one for 1, two for 2, etc.), and the second association is between the English
multiunit words and particular mark positions. To carry out a translation of marks
to words using the second association (i.¢., to say written marks as English words),
one must count or subitize (immediately recognize visually) the number of
positions in a multidigit number to find out the value of the leftmost position (e.g.,
‘one, two, three, four -- oh, the fourth place is thousands"), or use the multiunit
English word list in increasing order (ones, tens, hundreds, thousands) to find the
name of the leftmost position. In both cases, these procedures are opposite to the
order children are used to: they read and usually count (Fuson, 1988) from left
to right, and they say multiunit English words in order from largest to smallest.
To read this written multidigit number, one must then use the first association
between the written mark and one of the nine English number words, say that
written number, and follow it with the English multiunit word even though there
is no cue in the multidigit marks to say this multiunit name. This process
continues until the whole multidigit number is said. Translating in the opposite
direction (writing spoken English words in marks) is much easier: one just uses
the first association to write marks corresponding to the nine number words in the
order they are said and ignores the special multiunit words. If one kind of
multiunit does not appear in the number (e.g., 5096 has no hundreds multiunits),
however, another difference between the two systems appears. In English words
that multiunit just disappears and is not mentioned; in the written marks a special
new mark, 0, must be used for that vanished multiunit so that all of the other
marks will stay in their correct multiunit positions (they will move one position too
far to the right if no mark is put into the position of the vanished multiunit). A
final difference between the two systems is that one can easily say more than nine
of a given multiunit and such constructions have a quantitative meaning even
though they are not in standard form (e.g., twenty twelve or five thousand thirteen
hundred fifty two), but one cannot write such a number because it pushes the
larger multiunits into the wrong positions (e.g., 212 is not twenty twelve and 51352
is not five thousand thirteen hundred fifty two). The English words are
concatenated in that they are independent and strung together successively. Young
children and novices at learning the written marks (such as European adults used
to concatenated Roman numerals first learning the new Arabic numerals in the
Middle Ages) frequently learn written marks for each multiunit value and then
concatenate rather than embed these multiunit values (e.g., one hundred sixty four
is 100604 instead of 164 or seventy five is 705 instead of 75) (Bell & Burns, 1981;
Ginsburg, 1977; Menninger, 1969). These errors result from using a cardinal
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notion of written marks (one hundred is three marks because it is written 100)
instead of using the correct ordinal position meaning of the 100 mark: a 1 written
in the third position from the right. .

For either of these systems to mean anything, they must be linked to a
conceptual multiunit structure. All of the above learning can take place without
the learner having any idea what the English multiunit words or marks positions
mean, and the translations can be carried out completely as rote procedures. This
is in fact what seems to happen to many children in the United States under usual
school instruction. They do not have any quantitative multiunit referents for either
the English words or the written marks, and their conception of both of these
systems, but especially the written marks system, is a concatenated single-digit
conception: multidigit numbers are viewed as concatenated single-digit numbers
(see the literature reviewed in Fuson, 1990a).

Two abstract conceptual structures (ways of thinking) seem sufficient for
understanding multiunit addition and subtraction. These are the "multinnit
quantities" conceptual structure and the "regular ten-for-one and one-for-ten
trades” conceptual structure. The "multiunit quantities” conceptual structure
supplies multiunit meanings for the English multiunit words and the marks
positions. Its construction therefore requires experiences with multiunit collections
of single units (collections of ten units, a hundred units, and a thousand units) that
can be referents for the English multiunit words and the marks positions. In such
multiunit situations, a viewer must focus on the cardinality of the units and
conceptually collect. these units to form the required multiunit (e.g., see the ten
units as one ten formed from the ten units). Because the presence of the ten units
cannot ensure that the viewer actually collects them into a multiunit of ten (thinks
of them as one ten), a distinction is needed between the potentially collectible
multiunits presented in a situation and the conceptual collected multiunits formed
by an individual seeing the multiunits presented in that situation.

Base-ten blocks were invented by Dienes (1960) to support children’s
construction of multiunit conceptual structures. There are four kinds of blocks:
single unit blocks (1 cc), ten-unit blocks (long blocks ten units long), hundred-unit
blocks (flat blocks ten units by ten units by one unit), and thousand-unit blocks
(large cubes ten units by ten units by ten units). Other physical referents and
situations also can present such collectible multiunits, but base-ten blocks were
used in the present study and so will be discussed as the exemplar collectible
multiunits. The "regular ten-for-one and one-for-ten trades" conceptual structure
is conmstructed from the multiunit conceptual structure, or from situations
presenting collectible multiunits, by noticing that ten of one unit or multiunit
makes one of the next larger multiunit and vice versa. This ten/one relationship
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can be learned as a rote rule; the ten/one conceptual structures are based on
multiunits.

Much of the above discussion has ignored the fact that the English words, and
most European number words, actually have many irregularities for the multiunit
of ten while being totally regular for the multiunits of hundred and thousand.
These irregularities create problems for English-speaking children learning
single-digit sums over ten and learning place value and multiunit addition and
subtraction (Fuson, 1990a, 1990b; Fuson, in press-b; Fuson & Kwon, 1991). In
contrast, Asian languages based on Chinese are regular for the tens as well as for
higher multiunits: 52 is said "five ten two." Naming in this regular way the
multiunit of ten seems to facilitate children’s construction and use of conceptual
multiunits of ten (Miura, 1987; Miura, Kim, Chang, & Okamoto, 1988; Miura &
Okamoto, 1989) and their use of conceptual multiunits in multidigit addition and
subtraction (Fuson & Kwon, in press-b).

Addition of multiunit numbers involves two major components that differ from
addition of single-digit numbers. The first component is adding like multiunits,
that is, adding tens to tens, ones to ones, hundreds to hundreds, etc. The need for
this component arises because one cannot combine different multiunits to make
only one of these multiunits (5 hundreds plus 4 tens does not equal 9 hundreds or
9 tens). The second component is recognizing and solving the problem of having
too many (= ten) of a given multiunit. This need only arises in the marks world,
and not in the English words or with base-ten blocks, because it is only with marks
that one cannot write more than nine of a given multiunit. Thus, when the sum
of a given multiunit exceeds nine, one must trade ten of that multiunit for one of
the next larger multiunit. The two multiunit conceptual structures, the "multiunit
quantities" structure and the "regular one/ten trades" structure, can direct correct
addition with respect to both of these components of multiunit addition and can
help eliminate incorrect addition procedures. The physically salient different sizes
in base-ten blocks suggest combining same-sized blocks to find a multiunit sum
and also support trading when a multiunit sum exceeds nine. When teachers used
base-ten blocks to model the standard United States algorithm (writing the traded
1 multiunit above that multiunit number in the top addend), second graders of all
achievement levels and high-achieving first graders learned multidigit addition of
four-digit numbers and gave conceptual multiunit explanations for their trading
(Fuson, 1986; Fuson & Briars, 1990). These studies indicated that the use of
base-ten blocks directly linked to written marks procedures and described in
English words and block words could be a powerful instructional intervention.
However, they provided little detailed information concerning the ways in which
children formed multiunit conceptual structures, and they did not indicate the
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extent to which children could use the blocks in a similar linked way to construct
their own multiunit blocks addition and written marks addition procedures.

Purposes of this study

This investigation had three main purposes. The first was to examine how easy
it is for children to construct the relationships among English number words,
written multidigit marks, and base-ten blocks and to maintain these relationships
while exploring multidigit addition with the blocks and the marks. An important
part of this first purpose was to identify trouble spots in this construction process
for both practical and theoretical reasons. If teachers are to undertake this new
approach, it would be quite helpful for them to have a roadmap marking typical
roadblocks and error-prone routes as well as productive routes. Such knowledge
can also contribute to theories about how to support such learning and about how
this learning occurs. As part of this exploration, regular ten-based Asian word
forms for the second position (e.g., "seven ten five" for 75) were taught to some
groups.

The other purposes stem from the Curriculum and Evaluation Standards for
Teaching School Mathematics (1989) and the emerging vision of new teaching
methods described in Professional Standards for Teaching Mathematics (1991).
These suggest supporting children’s construction of their own arithmetic methods
and recommend that children work in small groups. The second purpose of this
study was to examine the kinds of procedures children would invent for four-digit
numbers when given the support of base-ten blocks and to explore the amount of
generalized place-value knowledge gained in making these constructions. The
existing data on children’s invented multidigit addition methods are limited almost
entirely to addition of two-digit numbers (see the review in Labinowicz, 1985).
Thus, we do not know how easy it is for children to use these two-digit procedures
for three-digit and four-digit numbers (that is, to invent and see a general
procedure across several digits) or to gain adequate generalized place-value
understanding in such an approach. The third purpose was to explore the benefits
and limitations of children working in small groups in this endeavor. We have
almost no knowledge of the kinds of teacher support children need for multiunit
addition approached in this way, and such knowledge would be extremely valuable
for teachers attempting to support children’s learning in the classroom. The
analyses of these purposes are necessarily somewhat intertwined, but this report
concentrates on the first purpose.

This initial study used children who were high-achieving in mathematics so that
the mathematical work would not be limited by gaps in prerequisite mathematical
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knowledge or by huge motivational problems that interfered with their
mathematical functioning. A second study using average and low-ability children
has been done, but results are not yet analyzed.

Method
Subjects

The 26 children participating in this study were all the children in the highest
achieving of the three second-grade math classes in a Chicago-area school that
grouped children for reading and for math. Children in the school were from a
wide range of SES backgrounds, from meeting the federal standards for receiving
free school lunches to high parental income and education levels, and were racially
heterogeneous. Children were given a written and interview pretest that assessed
conceptual and procedural competence in place value and multidigit addition and
subtraction. Children ranged on the pretest from solving no two-digit or four-digit
addition problem correctly (6 children) to solving all three vertical and both
horizontal problems correctly (4 children); they showed a similar range in
place-value knowledge and conceptual explanations for 2-digit and 4-digit trading
and alignment of uneven problems. There were many different patterns of
place-value and addition knowledge, with some children showing strength in one
but not the other.

Children were formed into three initial knowledge levels (high, medium, low)
on the basis of pretest performance. Each initial knowledge level was split into
two groups of 4 or 5 children balanced by gender. Because of the varied patterns
of performance on the pretest the children in each group, especially in the middle
and low initial knowledge levels, were quite heterogeneous with respect to the kind
of domain knowledge they possessed.

It emerged during the study that the first-grade teacher of about half of the
children had used a different kind of base-ten blocks to teach place value. She
taught addition and subtraction but did not use the blocks for this teaching. Every
group contained at least one child who had seen the blocks before. Thus, the data
concerning children’s initial exploration of the blocks must be considered as that
possible when at least one group member has had some initial exposure to the
blocks.

Procedure

The initial orientation to the study was done with the whole class during one
class period. The study was described, and the session then focused on
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establishing norms for the cooperative group work and describing the group roles
of leader and checker that were used to facilitate group work and participation by
everyone. The group approach was adapted from Cohen (1986) and Johnson and
Johnson (1989). The principles of groupwork were to be brief, to listen to others
and reflect on what they have said, and to make sure that everybody gets a turn.
The leader’s roles were to enforce these principles and to choose whose turn it was
to speak. The checker’s role was to be sure that group members said whether they
understood or agreed with procedures being used or conclusions drawn by the
group. These roles rotated around the group on a daily basis; children wore a
special large button to identify their roles.

Each group had an adult experimenter who monitored the group learning. One
experimenter was a Ph.D. candidate who had designed the study and groupwork
approach and had considerable knowledge of the literature on children’s
mathematics learning. The other two experimenters were undergraduate honors
students in psychology and education who had extensive experience with children.
Each experimenter oversaw the videotaping of each group, took live notes of
important mathematical discussions, and intervened when children’s behavior
became too rowdy or when the group became stuck on a mistaken procedure for
too long. Math class was 40 minutes fong, and about 35 minutes were effective
working time as opposed to set up or clean up time.

An experimenter-intervention strategy was adopted that attempted to let
children follow wrong paths until it did not seem likely that any child would bring
the group back onto a productive path; the experimenter then intervened with hints
to help the group but giving as little direction as necessary. This was done to
provide maximal opportunities for the children to resolve conflicts and solve
problems creatively. Because this necessarily always involved a judgment call, this
locse description was replaced in the second session (see below) by a criterion of
letting children follow a nonproductive path or engage in incorrect mathematical
thinking for the length of one class session but then intervening. This criterion was
intended to reflect the reality of a classroom where a teacher monitoring six or
more groups might not get to a given group for a whole class session but would
be able to give support by the end of that time.

Space and videotape equipment constraints resulted in a need for two successive
data-gathering sessions. Each session used three groups--one high, one medium,
and one low initial knowledge group. In each 3-1/2 week session the teacher
worked in the classroom on a different topic with the half of the class not
participating in that data collection session. Each experimenter supervised the two
groups at the same initial knowledge level in the two sessions.
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For the initial experience with the base-ten blocks the experimenters followed
a script that asked children to do several successive tasks: 1) choose their own
names for each kind of block, 2) find the (ten-for-one) relationship between
adjacent-sized blocks, 3) find any similarity between these relationships, 4)
establish the English words for each kind of block, and 5) establish the
relationships among block arrays, English words, and the standard four-digit
marks. The groups varied in the time they spent on these tasks, taking between
one and three class periods to finish them. In the first session each group was
given a file box of digit cards (small cards each with one numeral written on it) to
show four-digit marks; these had been used successfully in the studies modelling
the standard algorithm (Fuson, 1986; Fuson & Briars, 1930). When used for
addition and subtraction by the children in the groups, the digit cards proved to
be very time-consuming. It took children a long time to put all of the index cards
away after a problem, and children frequently worked only in the blocks world or
in the digit card world and did not link the two. Therefore, the digit cards were
replaced in the second session (i.e., for the second three groups) by a "magic pad:”
an 11" by 14" pad of paper which was magic because it had to show everything that
was done with the blocks as soon as it was done but could not show anything that
was not done with the blocks. Children were encouraged to "beep" whenever these
constraints were violated. In both sessions children also wrote on individual papers
after the first few days of addition. Because big cubes are expensive, each group
set had two wooden big cubes and five big cubes made up of cardboard folded and
taped into big cubes. Some groups also had for the addition phase a few hundreds
blocks cut out of plain wood.

During the first session, the highest and lowest-achieving groups received the
language intervention in which they were taught to use "Asian” number words for
the tens place (68 was said "six ten eight”). We had intended to manipulate this
variable across achievement and use it only in the middle-achieving group in the
second session. But during the first session, only some of the children regularly
used the Asian tens words. We did not want to interrupt the flow of children’s
work and the establishment of their autonomy by continually reminding them of
this use. Therefore, we abandoned the manipulation of this variable and
introduced this terminology to all three groups in the second session, intending to
watch its survival and use with little support from the experimenters.

During the addition phase of the study, children were given an addition problem
written horizontaily on a long strip of paper and asked to use the blocks and the
digit cards (or magic pads) to do that addition problem. After they had agreed
upon a solution to one problem, they were given the next problem in a prepared
list of problems. The first several problems in the list had four-digit numbers as
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both addends (e.g., 1629 + 3747). No commas were used to write four-digit
numbers. All problems required trades in one, two, or three columns. The
number of thousands was generally one through four in each addend; this was
smaller than the other numbers (which ranged up to addends of 9) because we did
not have as many thousands blocks as other blocks. The issue of adding like
multiunits was raised by giving the children some four-digit problems plus three-
or two-digit problems later in the problem list. After several days of addition,
children wrote marks problems on individual papers as well as doing them with
blocks and/or digit cards on the magic pad. The goal was to move from doing
coordinated block and individual paper solutions to doing just individual paper
solutions connected to mental multiunit quantities.

We had hoped to have children work on multidigit addition until the group had
agreed on one or more correct written procedures, and most children could add
in written marks without using the blocks and could explain the addition in terms
of multiunit quantities. Our agreement with the school regarding the dates for the
study was based on the amount of time teachers in the earlier teacher-directed
studies had spent with high-achieving second graders learning multidigit addition
and subtraction with the blocks. Our original dates included at least 18 learning
days, but math class was canceled on several days. Because we were obligated to
teach both addition and subtraction, we moved on to subtraction before some of
the children in the lower two groups displayed as much competence in addition as
we desired (these subtraction results will be described elsewhere).

Because most groups did not get to subtraction problems with zeroes, the
postiests were combined with a teacher-directed phase intended to be more like
the original teacher-directed studies. The high initial knowledge children who had
done such problems were split between the other two groups, and these groups
worked for three days on such problems with considerable direction by the teacher
for each group. During this time the experimenters interviewed children from
their own group.

Analyses

All of the videotapes were transcribed by the experimenter for that group or by
a work-study student. All mathematical conversations were transcribed verbatim
and annotated with respect to actions with the blocks and marks (digit cards or
magic pad), social-emotional interaction, and any other aspects of the group
interaction not directly reflected in the verbal record. Off-topic digressions were
to be summarized with an indication of their topic and length. All transcriptions
were checked by a second transcriber.



50 K.C. Fuson, J.L. Fraivillig & B.H. Burghardt

To ascertain the relationships between actions on the blocks and actions on
written marks, block and mark summaries were prepared for each day of addition.
These showed in one column drawings of the successive block lay-outs and in
another column the successive digit card lay-outs or m: ic pad writings; all of
these entries were numbered with a line of the transcript and lettered to identify
the child doing the action. These summaries made it easy to ascertain key features
of the block or mark addition procedure and to determine how parallel the two
procedures were. In spite of the emphasis to the transcribers on including
complete accounts of the actions on the blocks, digit cards, and magic pads, the
transcriptions proved to be variable in the extent to which these block and mark
summaries could be prepared from the drawings already in the transcriptions;
some tapes had to be viewed again in order to prepare adequate summaries.

A category scheme based on the analysis of multiunit knowledge in Fuson
(1990a) was developed and used by one coder in a preliminary analysis of errors
children made in the groups (Wallace, 1990). A major focus of these categories
was associations between or among blocks, block words, English words, and
written marks because we were interested in the extent to which children were
constructing these associations. This category system was used over a three-month
-period by three coders to code every utterance. However, we were unable to
achieve acceptably high inter-rater reliabilities. Coders would agree about the first
level of association. For example, two coders would agree that a certain utterance
was an English word/block association, (i.e., that it was an English word that
referred to a block), but they would frequently disagree about further levels of
association. For example, one coder would conclude that the child at that moment
also had that English word and block associated with the written mark in the digit
cards or on the original horizontal problem while the other coder would not agree
with this further association. This was not a simple problem of different coders
having more or less overall inclusive criteria; - rather, they differed in their
interpretation of what was in the mind of a given child at a given moment for a
given utterance. We finally concluded that it is very difficult, and perhaps
inherently impossible, to conclude for a given utterance at a given moment in time
just which referents in the mathematical environment are intended by, or within
the attention of, the child giving that utterance. The whole goal of this
teaching/learning environment is to support the construction of a tightly linked
web of interconnections among words, visuo-spatial (actual or mental) objects, and
written mathematical marks. Therefore, a child who possesses or is in the process
of building such a web can potentially be accessing all of these meanings or
referents attentionally in the real world or mentally. However, a child does not
necessarily do so at any given moment even though all of these meanings are
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available in the actual environment or mentally. Therefore, we abandoned the
attempt to code individual utterances and moved to descriptive methods in order
to capture the complexity of the relationships children were (or were not)
constructing among these different worlds; these methods permitted us to
summarize the evolution of these webs within individual groups. We were
concerned about the reliability of these more descriptive case-study methods, so
the following criteria were established. For the descriptions that are relatively
"objective” such as whether a given blocks procedure was accurate or not, the
descriptive summaries in this chapter were written by the first author alone. For
group interaction or social/emotional issues or other more complex issues, any
summaries were prepared and agreed on by at least two authors.

Establishing relationships among blocks, block words, English words, and written
marks: Results

The amount of time it took to establish relationships among blocks, block
words, English words, and written marks varied by group from 1 2/3 to 3
40-minute class periods. The Session 1 high initial knowledge group (H1) took 2
days. The Session 2 high initial knowledge group (H2) took 1 2/3 days. The
Session 1 middle initial knowledge group (M1) took 3 days (partly because of
videotape failure that led to postponing the start of addition until the fourth day).
The Session 2 middle initial knowledge group (M2) took 2 1/2 days. The Session
1 high initial knowledge group (L1) took 3 days. The Session 2 low initial
knowledge group (L2) took 2 1/5 days.

Each group first chose names for the blocks. They then found the ten-for-one
equivalencies between adjacent block sizes beginning with the little cubes and
longs? Children then ascertained the English words for the blocks by deciding
how many little cubes were in each of the larger blocks. Some games were then
played to practice the connections among the blocks, block words, and English
words. Finally, each group worked on establishing relationships among blocks,
English words, and marks. Results of each of these activities are described below.
Some readers may wish to skip these detailed results and move straight to the
discussion of this initial phase of establishing relationships. To facilitate this, and
to provide an advanced organizer for readers of these results, a brief summary of
the major results is provided in the next paragraph.

2 Except where we are describing particular group block discussions, we will use the foliowing
names for the blocks: little cube, long, flat, big cube.
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The names of the blocks chosen by various groups mostly depended on size and
shape, and food related names were common. The naming process varied by
group. Children easily found the ten-for-one equivalencies between the little cubes
and longs, the longs and flats, and the flats and big cubes. They made few errors
with respect to these equivalencies throughout this whole preaddition phase. Four
of the 26 children did propose a four-for-one or six-for-one equivalency for the big
cube and flat (i.e., they initially said that four or six flats made a big cube). Many
verbal responses concerning equivalencies were not maximally helpful because they
were so abbreviated. Children were very accurate in using English words and
block words. They learned the Asian tens readily, though individuals varied in the
extent to which they spontaneously used them in subsequent discussions. Children
easily established relations among blocks, English words, and written marks. The
need for zero arose in all groups and was successfully resolved. Some groups
grappled with the issue of how to write block arrays that had more than ten of one
kind of block (see Table 3).

Choosing names for the blocks

Experimenter direction. The experimenters gave the following directions to each
group: "Choose a name for each kind of these blocks. Choose names that tell you
something about the blocks so that you will be able to remember the names. You
all need to agree on the names.” Thereafter, the amount of experimenter
involvement varied by group. Groups H1 and M1 (session 1 groups with high and
middle initial knowledge) nominated and chose their names without any further
comment from the experimenter. In Session 2 in all three groups some child
nominated a block name that contained a number. Because we wanted the block
names to be distinctive from the English words, which contain numbers in two
different roles (as the multiunit name and as the number of multiunits), each
experimenter said that the block names could not contain numbers. Two of the
experimenters then suggested choosing a name that tells something about what the
blocks look like. The group H2 and M2 experimenters both acted to ensure that
the group agreed with the final choices. When a child in group H2 announced that
they had named everything, the experimenter responded to the lack of clear voting
procedure and choices by asking what names they had chosen and then asking if
everyone agreed with those stated choices. She then asked the checker to verify
that everyone agreed with the choices. The experimenter for group M2 also asked
the checker to verify the final choices with everyone. The name-choosing process
for the L1 and L2 groups involved considerable interaction with the experimenter.
Early in the choosing process for group L1 the experimenter began trying to get
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the leader to establish an orderly process, perhaps because the group was
nominating names at random for various blocks; the experimenter gradually took
over the role of leader. In group L2 the experimenter initially suggested a
procedure (beginning with the smallest block) and then took over the leader role
early in the process. The choosing process in these two groups did include all
children because of the effective adult leadership. To the suggestion of "heavy" for
the big cube by group L1, the experimenter pointed out that the cardboard big
cubes were not heavy, though the wood cube was. The experimenter questioned
the children’s choice of "rectangular” in-group L1 and "big ice cube" in group L2
because they took so long to say, but the children refused to change these names.

The block names. The number of block name nominations varied across groups.
Groups H1, H2, M1, M2, L1, and L2 nominated 13, 50, 18, 14, 23, and 12 names,
respectively (see Table 1). All six groups chose names for individual blocks rather
than explicitly deciding upon a particular series or overall group category.
However, four of the groups nominated a series of block names that did reflect
some overall relationship, such as baby block, sister block, momma block, and
daddy block. None of these series was the final choice. Group H2 nominated
several different series names (see Table 1).

All six groups chose at least one block name that related to the shape of a
block. Three of the groups (H1, M2, L2) used the shape of the block to designate
names of food or food-related terms for all four blocks; the children in group L2

xplicitly commented on the common theme of food in the names. The three
remaining groups assigned two or three of the names based on the shape of the
block, with only one of these being related to food ("pancake"). The other choices
for these groups were based on size. The flat and long blocks were based on
shape, and the small cubes were based on size in these three groups. The
members of group L1 observed and discussed the fact that three types of blocks
had square shapes and therefore this particular feature was rejected as a possible
naming criterion.

Five of the six groups followed at their own initiative a consistent size order
when choosing the names for three of the four block choices; the one block out
of this order varied across groups. Two of the groups (H1 and M1) moved from
the smallest to the largest block, and the other three groups (H2, M2, L1) moved
from the largest to the smallest block. Group L2 moved from the smallest to the
largest block at the direction of the experimenter.

The block naming process. Two different nominating and voting patterns
emerged from the six groups. Three of the groups (H2, M1, M2) randomly
nominated names for all the blocks, discussed the nominations, and postponed
voting or choosing until the end of the discussion. Groups H1 and L2 discussed
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nominations for a particular block and agreed on a final name before nominating
names for other blocks. Group L1 began with the first pattern but moved to the
second. The procedure for 12 and the shift for 1.1 were initiated by the
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experimenter.
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M1 U: thousands
M: hundreds
V: big guy
O: fatty

Table 1. Names Nominated and Ultimately Chosen By Each Group

Group Thousands

Hundreds Tens

M2 N: one hundred
T: square

U: cube

Ones

Hi

H2

N: master ice cube L:flat L:carrot stick

N: Big Mac L: plate

L: loaf of bread

L: iceberg

L: Mommy

E: glacier

E: meatloaf

Z: blockhead D: hundred block D: 10-block
M: stegosaurus D: birchtree M: mapletree
D: thousand block M: house D: Pin

M: appletree M: a hundred Q: skinny guy
Z: eight corner M: Mama square M: child square
M: Christmas tree M: dinkey M: donkey
M: elm Q: Mama bear D: stick

Z: redwood D: flathead M: math two
M: fatty M: math three D: ten math
M: facemask D: hundred math Q: skinny

M: city

Z: big square

M: Papa square

M: dunkey

M: Susie

M: Philip

M: math four

D: thousand math

N&L: six-sided block
L: baby
C: ice cube

Dh: ice cube

L1 N: big block
N: Daddy block
N: heavy block

X: ten blocks

M: Pinnochio

Z: one-square

D: one-block

M: Pinocchio(Pin)
D: small fry

Z: small square
M: baby square
M: dinkey

L2 T&K: thousands
B: big ice cube

U: hundreds
O: kids

U: kid guy
U: baby

U: iceberg

T: square
U: pancake

D: square blocks

D: rectangular
square

D: flat block

D: Momma block

D: pancake block
X: medium block

J: hundreds
N: bread

Z: eight ball
M: math one
Q: baby bear

Jan

B: bread-bread

55

U: tens U&M: ones
U: skinny guys M: baby
U: long legs O: little man
O: long guy U: baby T

U: little guy®
U: rod T: candy
N: stick Dh: smallest cube
T: straw in the world
T: orange straw U: tooth
U: licorice

D: rectangular  D: little block

block D: small blocks
N: rectangle N: baby blocks
blocks N: Daddy Junior

N: brother block X: tiny block
: sister block

: carrot stick

: skinny block

: medium blocks

: long block

XKz Z

N: tens

T&K: strange-
strangey

T: breadstick

B: pretzel

B: ones

B: sugar cube
B: cheese

Note. The nominations are listed in chronological order and are prefaced by the
nominating child’s code. A
*"Little man" is the chosen name, but "little guy" is the name actually used by the
group. The change occurs without explicit group discussion.

The time devoted to the block naming task differed across the groups. Groups
H1 and M1 completed the naming process in less than 3 minutes and 4 minutes,

respectively.

Groups M2 and L2 completed the task in 6 and 7 minutes,
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respectively. Both groups 1.1 and H2 spent 14 minutes nominating and assigning
names to the blocks.

The block naming process varied considerably across groups. The personalities
of the official leader and of the most dominant group member (these only
sometimes coincided) strongly influenced this process. Some exercised their power
with relatively little sharing, while others used their power to bring other group
members into the choosing process.

The children in group H1 quickly grasped the task of assigning block names and
worked well together to accomplish it. Each child seemed to enjoy the notion of
assigning names to the blocks. The child who initiated the nominating activity, L,
emerged as the dominant group member in the naming process. She nominated
the most names (8), won the most final choices (2), and successfully vetoed
nominations for blocks that she did not win. Ultimately, however, the group
engaged in a voting process that included all group members for each decision.

Group H2 had difficulty in agreeing on what the block names should be. The
process was meandering, with considerable disagreement between M and the
official leader Q. M was a very dominant member in this process; she nominated
8 of the group’s 50 nominations (many as a series of names) and gave 5 vetoes and
0 agreements to the other members. M monopolized the conversation and became
frustrated when other members disagreed with her nominations without suggesting
alternatives. Q was the least verbal member and nominated only 4 names. D, an
involved member, won two of the final four block names. Although D was
engaged for most of the activity, at times she would stray from the discussion and
construct block buildings. Group member Z made seven nominations. He seemed
frustrated with the prolonged inconclusive discussion and fairly early suggested that
each person name one block. This was ignored for a long time, but was followed
at the end when each person chose one block name and everyone agreed without
voting.

Group M1 passively followed the strong leadership of U, their official leader for
the day. U suggested 12 of the 18 nominations, ending with two of the four final
names. U later changed the name for the unit block to her own original
suggestion. The group expressed no direct vetoes and maintained a low level of
engagement throughout the activity. One member, D, expressed his votes
nonverbally by raising his hand and did not nominate any names.

Under the capable leadership of the official leader, Da, Group M2’s voting
process was expedient and smooth. Da initiated the voting process, objectively
facilitated the discussions, and kept the group focused on the task at hand. Da’s
comments of "Does anyone have any suggestions for..." and "So who likes pancake
for this?" propelled the voting process and invited involvement. Consequently, all
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group members were engaged and agreeable. The group offered many statements
of agreements and few vetoes. Da suggested that the group choose names that
would reflect the blocks’ relative size. From his five nominations, U won 3 of the
4 final choices and openly displayed his pride.

Group L1 members contributed equally to their 23 nominations and maintained
similar levels of involvement throughout the exercise. The experimenter acted
early to elicit more leadership from the official leader and then began to function
as the leader, eliciting these equal levels of participation and strongly guniding the
name-choosing process. N, the official leader, offered tacit approval of D’s and
X’s suggestions. D gained quiet dominance over the group by means of her
parsimonious approval and frequent vetoes. X evaluated others’ nominations with
a balanced number of agreements and vetoes. Overall, the group was not strongly
engaged and grew less interested over the 14-minute process. One group member,
M, was absent during the naming process.

Group L2’s voting process was structured from the beginning by the
experimenter who suggested moving from the small to the large blocks. The
official leader, T, relinquished her authority and strayed off task after her
nomination of "breadstick" was not chosen by the group; the experimenter then
took over the leader role. X, although nominating only two names, skillfully
performed his job as checker. B suggested five of the overall 12 nominations and
won three of the final four choices. The group at no time voiced vetoes of the few
nominations but rather resuggested their preferred choice.

Finding the Ten-For-One equivalencies in the blocks

This activity was structured by a worksheet that presented three successive
questions using block diagrams. The questions were all of the form: How many
__equala___ ? The first blank showed a diagram of the smaller block, and the
second showed the block that was ten times larger. The questions moved from the
small cube/long equivalency to the long/flat equivalency to the flat/big cube
equivalency.

Table 2 presents the number of children giving verbal responses that stated "ten"
as the equivalency or making block demonstrations showing that ten smaller blocks
make one of the next larger blocks. Both kinds of responses are further classified
into two types: a) simple block demonstrations or statements of a ten-for-one
equivalency, for example, that ten longs make a flat or b) complex demonstrations
or statements, which involved the use of an already established ten-for-one
equivalency. Most of the complex cases were argumentations or demonstrations
that used two adjacent equivalencies, for example, "Ten little guys in a long leg, ten
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long legs in each iceberg means one hundred little guys in an iceberg," The table
includes not onmly children’s responses to the worksheet but also spontaneous
demonstrations of equivalence that occurred before this task (many children
spontaneously put small cubes on top of a long or longs on top of a flat during the
block name-choosing process) and after this task while children went through the
rest of the preaddition activities (most of the complex uses occurred in the phases
after the equivalency task). For each entry in Table 2, the number of responses
a child made ranged from one to four.

Table 2. The Number of Children in Each Group Who Demonstrated Ten-For-One
Equivalencies with Blocks, with Words, and with Blocks and Words Simultaneously

Ten Hundreds = One Thousand Ten Tens = One Hundred Ten Ones = One Ten

Simple  Complex Simple  Complex Simple Complex
Blocks and 12 8 10 3 13 1
Verbal
Blocks only - 1 8 - 8 -
Verbal only 10 7 10 9 14 9

Note. Over the total equivalency time, a child could produce equivalencies in each
category (verbal only, blocks only, blocks and verbal at the same time). A child
is entered in each category once regardless of how many equivalencies of that type
s/he produced, but a child may appear in more than one category.

Every child in the study demonstrated understanding of at least one ten-for-one
equivalency. All but two children demonstrated the ten/one equivalency verbally
or with blocks or in both ways. These two children did identify both the
thousand/hundred and the hundred/ten equivalencies. Twenty-three of the 26
children demonstrated the hundred/ten equivalency, and twenty children correctly
showed or stated the thousand/hundred equivalency. Most of the demonstrations
with blocks consisted of putting ten of the smaller blocks on top of the larger block
{on top of the long or the flat) or beside the larger block (beside the long or the
big cube). Children in three groups spontaneously put ten flats inside the open
cardboard version of the big cubes as part of the discussion of how many small
cubes make a big cube (see the next section). Verbal responses included simple
answers of "ten" to the how-many question, counts of the blocks that ended in ten,
equivalence statements that used indicating pronouns (e.g., "There’s ten of these
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in this"), and full equivalence statements using the block words (e.g., "There’s ten
little guys in a long leg."). The majority of the responses were of the first two
types. Most of the equivalence statements did not name the multiunits. The lack
of demonstration of an equivalence by a given child may reflect only the structure
of the group discussion as not requiring action of any kind from every child in the
group. The "flavor" of the equivalency discussions in all groups was one of most
children already knowing (from the place-value work with blocks in the previous
year) or readily seeing the ten-for-one equivalencies. A few children said that they
did not understand a particular equivalency, and other children in the group
immediately demonstrated with blocks and verbally told the child the answer.
During the whole preaddition phase, there were very few errors concerning the
ten-for-one equivalencies. There were two counting errors (final counts of nine
and eleven instead of ten) that were immediately corrected by other children. In
group L1, two children, N and D, answered "two" in response to questions like,
"So, if this (single) is one, what’s this (long)?" These responses of the ordinal
number of the multiunit, the second multinnit, instead of the cardinal multiunit
embodied by the blocks (ten) seemed to be misunderstandings of the question
rather than lack of understanding of the multiunit value of the long block. Four
children demonstrated confusion over what attribute of the big cube should be
used to determine the equivalency. In group H1, E objected to determining the
flat/big cube equivalency by stacking ten flats beside one cube, stating, "You can’t
do it by thickness." The other three group members finished their stacking and
counted the flats to show ten. E then counted the blocks himself to verify the
group’s answer and agreed with it. There was a more prolonged confusion in
group L1 that was initiated by N and X answering the flat/big cube equivalency
question by focusing on the drawing of the big cube that was on the worksheet.
The drawing directed them to the sides of the big cube, and they initially
responded by saying four flats equal a big cube. The experimenter moved them
from the drawing to the real blocks, where X immediately stacked ten flats beside
the big cube and N put four flats on the four sides of the big cube. X reasserted
that there were ten, but there was no discussion by N or the group to resolve this
difference. During the task of finding the English word for the big cube, N
answered "four hundred," demonstrating that he had not changed his view. D then
counted the six sides of the big cube, so N changed his answer to "six hundred.”
X again made a stack of ten flats by the big cube. The experimenter then clarified
that the question, "How many pancakes equal a big block?" means how many fill
up the cardboard cube, not how many cover the sides. This seemed to resolve the
issue because all three children spontaneously demonstrated this ten-for-one
equivalency during the discussion of English names on the following day.
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Within each of the six groups, at least one child identified the overall
ten-for-one pattern that held across all three equivalencies. In all but one of the
groups, this was a spontaneous observation that occurred during one of the
particular equivalencies. In group L2 the observation that they were all ten was
in response to the final worksheet question "Is there anything the same about what
you found in (worksheet questions) 1, 2, and 37"

Ascertaining the English words for the blocks

The English words for the first three multiunit values used in base-ten multiunit
numbers are, like most words, arbitrary. But the quantity named by each of these
English words (“ten" "hundred" and "thousand") can be ascertained by amnmucm.mﬁnm
how many little cubes are in each of the larger blocks. For the long, this is the
same task as the ten-for-one equivalency task. For the flat and big cube, children
can establish that one hundred little cubes make the flat and one thousand little
cubes make the big cube. The hollow cardboard big cubes could be opened up to
facilitate the task of ascertaining that one thousand little cubes fill the big cube.

Establishing the multiunit quantity of the flat and big cube in 8_,.Bm of E.w unit
cubes, and providing the English names for these multiunits if children did H.Sﬁ
already know them, was the next task. Again, the process followed varied
considerably by group. However, all groups established the hundred and E.o:m.mnm
equivalencies fairly readily, but they did so with relatively little m.E verbalization.

Three groups had at least one child who began to explore the little cube/flat or
little cube/big cube equivalencies during the ten-for-one equivalency S.mw. Two of
these groups (H1 and M2) continued on with the little cube/flat equivalency by
covering a flat with longs and arguing that one hundred little cubes made a flat
because ten little cubes were in a long. In both groups the experimenter then
asked how many little cubes would fill the cardboard big cube. Both groups began
to fill the big cube with little cubes. Both experimenters, @n}m@.m prematurely,
then suggested a more efficient approach (M2: 'Is there an easier way?" HI:
"How many little cubes if they were all level at the bottom?"). Group M2 then put
ten flats into the big cube, and Da gave a full explanation based on all three
adjacent ten-for-one equivalencies. In H1 E answered _.wun hundred" and

suggested putting hundreds blocks in the big cube. The experimenter then wmwnm
how many carrots (longs) were in the big cube. L and E said __omm EE%.@P and
they all started filling the big cube with carrots. E then said he didn’t think they
had one hundred carrots and that they should start putting in some plates (fiats).
They filled a new cube with plates, saying that ten plates filled the big cube. The
group then wandered into a discussion of the leader and checker roles, and an
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explanation of why there were one thousand little cubes in the big cube was never
elicited or given. The third such group (H2) only asserted verbally that there were
one hundred little cubes in a flat; the experimenter never asked them to explain
or demonstrate this with blocks. In this group the same pattern was followed for
the little cube/big cube equivalence.

In the other three groups the experimenters specifically began a new phase in
which they described the task as deciding what the English names were for each
kind of block. Group M1 began like H2, but they asserted the answer verbally.
When asked to demonstrate their assertions on the second day, U began putting
little cubes on a flat while D put ten longs on a flat. M then counted the longs by
tens (10, 20, ..., 90, 100). O reconciled these two approaches by putting little cubes
on top of the longs on a flat to show the ten rows of ten little cubes each (only
some of the rows of little cubes were made, but all ten rows were described).
These children repeated these same roles with respect to the big cube except that
O said they didn’t have one thousand little guys so he repeated the approach of
counting by hundreds the ten flats stacked by the big cube. When U said she did
not understand, O began to show her. But she then said she understood, stacked
ten flats, and said that it was one thousand because the nine flats are nine hundred
and the last one makes one thousand.

Group L1 began by putting little cubes on the flat. N then put longs on a flat
and counted them by tens to get one hundred. The group then moved
spontaneously to the issue of the number of little cubes in a big cube and became
involved in the ambiguity discussed above, with N and D asserting four hundred
and then six hundred (based on four and then six flats to make the sides of a big
cube) and X asserting that one thousand little cubes were in the big cube (because
of a stack of ten flats beside a big cube). The experimenter clarified the meaning
as filling up the big cube. On the next day two children verbalized several times
the small cube/long and long/flat ten-for-one relationships to show that one
hundred small cubes make one flat, but X said he did not understand. Most of
these explanations used "these" rather than block words or English words. The
experimenter elicited a counting by ten of the longs on a flat, which N had done
spontaneously on the previous day. X then spontaneously moved from one
hundred little cubes in a flat to saying there were one thousand little cubes in a big
cube. M first stacked ten flats beside a big cube, and they then filled a cardboard
big cube with the flats.

In group L2, B and J responded that they had learned last year that one
hundred little cubes made a flat. B showed and verbalized that "these (sugar
cubes) are ten (shows sugar cubes stacked next to a pretzel) and ten of these
(pretzels) make this (bread)." J started putting lots of sugar cubes on top of a
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‘ead, and B pushed them into neat rows with a pretzel and covered the rest of
& flat with pretzels. To show how many sugar cubes in a thousand, B stacked
n flats beside a big cube. To the task of filling the big cube, J recognized that
ey did not have one thousand little cubes to use and, when the experimenter said
aybe they could fill it with other things, he excitedly said to fill it with flats. B
anted to put in pretzels, which the other children began to do (after some sugar
ibes were in). B said that the pretzels had to be in rows (ie., ten of them
gether made a flat across the bottom of the big cube). J made a joke by using
€ food block names to suggest that they make a sandwich with the sugar cubes
heir little cubes) between two slices of bread (their flat). Time ran out before
ey finished filling the big cube.

Practicing labelling the blocks with english words and block words

Children played three kinds of games to practice the associations among the
ock words, English multiunit words, and blocks. A child would choose a block
ir say a block word or an English multiunit word), and the other children had to
iy the English word and block word for it (or say the other kind of word and
iow the block). The experimenters were to continue the games until all children
ere able to produce these English word/block/block word associations quite
pidly and accurately. These games were done because it was anticipated that
rge numbers of inaccurate or very slow use of English multiunit words or block
ords would interfere with children’s ability to communicate during the multidigit
ldition and subtraction phases.

All groups used the English words and the block words quite accurately during
& games, rarely making any errors. In some groups children also produced these
ords very rapidly from the beginning of the games; these groups moved on
sickly to the next phase. No group spent more than half the period doing this
actice.

To assess how accurately children used the block words and the English
ultiunit words throughout the whole preaddition phase, all such utterances
:tween the end of the block name-choosing phase and the beginning of multidigit
ldition were identified. The English words included only those uses of an
nglish word as a unit value (one) or as a multiunit value (ten, hundred, and
ousand); not included were uses of these English words as the number of a given
1t or multiunit because such uses are unitary cardinal meanings that tell how
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many of some kind of unit rather than telling what kind of unit.> So, for example,
"a long legs is a fen" and "there are four fens" would be included as an English
multiunit ten, but "there’s ten of those in this" would net be.

Across all children, the words "thousand,” "hundred," "ten, and "one" were used
as multiunits 187, 161, 200, and 103 times, respectively, with the number of uses
by each child ranging from 0 to 14, 1 to 16, 1 to 13, and 0 to 12 for these
multiunits, respectively. There were no errors'in the use of "thousand" or "one,"
and only four errors in the use of the words "hundred" and "ten" (all were in group
L1). All but three children said each multiunit word at least once; the three
exceptions were in group M1, where one child never said "thousand" and two
children never said "one." These uses are pooled across examples of giving the
English multiunit word for a block, for a block word, and for a written mark, so
these children exhibited a very robust ability to give the correct English multiunit
word for these various multiunit manifestations.

Children used the block words chosen by their group for the big cube, flat, long,
and little cube 112, 92, 89, and 83 times, respectively, with the number of uses by
each child ranging from 0 to 9, 0 to 7, 0 to 7, and 0 to 6 for these blocks,
respectively. There were no errors in the block words for the small cube or long,
one error in the use of the block word for the big cube, and four errors by three
children in the word for the flat; all errors were in group L1. All but one or two
children said each block word at least once (all but one of these exceptions were
in group M1); two-thirds of the children said a given block word at least three
times. It thus seemed to be quite easy for these children to use the block words
they had chosen in their group.

Most of the English multiunit word and block errors in group L1 were
confusions between the multiunits of ten and hundred. Three of the four errors
in English multiunit words and block words for the hundred multiunit occurred at
one point in a game where one child said pancake and three children said "tens"
(this was quickly corrected to hundreds). One child used the block word
"rectangular” instead of "pancake" for the flat and later grabbed a flat instead of
a long block for the word "ten." The other errors were using a suggested but not
chosen name for the big cube ('daddy" instead of "big") and giving the ordinal

? During the discussion of how many little cubes make a flat and how many little cubes make a
big cube, it was sometimes difficult to tell whether the words "hundred" and "thousand" were used as
a single collected multiunit of small cubes or as the cardinal number of that many small cubes.
Because the task in this case was to ascertain the latter in order to form the conception of the former,
these meanings may be ambiguous or even simultaneously intended. Such uses were included in the
analysis.
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number of a multiunit (two, the second multiunit) instead of the multiunit value
as ten.

Establishing relationships among blocks, English words, and written four-digit
marks

The final two phases before multidigit addition focused on multiunit numbers
composed of thousands, hundreds, tens, and ones. The first of these phases
related block arrangements to English words, and the second established
relationships among blocks, English words, and written 4-digit marks. A collection
of blocks presents the same multiunit number no matter what order the blocks are
arranged in because each block contains its multiunit value and thus carries this
value to any new location. Although English words are ordinarily said in a
standard order from the largest multiunit down to single units, the value of a
multiunit number will be conserved if the multiunits are reordered or even split
up and reordered: Three hundred two thousand five ten four hundred eight is
obviously two thousand seven hundred five ten eight. However, written marks
cannot be reordered because that will change their value. They do not carry their
multiunit value within themselves in any feature except their relative left-to-right
order--they are, after all, only ordinary single-digit numbers that tell how many
there are of each multiunit and which multiunit is numbered depends only on the
position of that number. It is therefore easier to say written marks if one uses the
standard larger-to-smaller order of English words that matches the
larger-to-smaller left-to-right order of written marks. It is also much easier for the
multidigit written marks to take on the multiunit quantities presented by the blocks
if the order of the blocks matches the order of the written marks. Therefore, in
the first phase children were told by the experimenter that it was easier to say the
English words for the blocks if the blocks were arranged left-to-right from largest
to smallest. Children then practiced making several numbers by putting out
several of each kind of block and saying each such block array in English words.
In the final preaddition phase they did this while also making the marks for these
block numbers by using digit cards (Session 1 groups) or writing on the magic pad
(Session 2) or writing on individual papers (both sessions). Because the children
during most of these phases made their own numbers by selecting some of each
kind of block, not all of the issues discussed in this section arose equally in all
groups.

Block arrays and English words. The initial phase of arranging block collections
from the big cubes on the left through flats, longs, and little cubes on the right and
saying the English words for such collections went smoothly in every group. The
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only error or difficulty occurred in group L2 when one child said that the ones go
on the left.

Five of the six groups were told how to say Asian tens (the regular form of ten
that parallels the English use of thousands and hundreds: 52 is said as "five ten
two") after the first block arrangement. They then practiced making several
different block numbers and saying them in English words using the Asian tens.
All groups learned the Asian tens readily, with no one making any errors for
arrays having two or more tens. Teen numbers were not modeled by the
experimenter, and most groups did not generate such words. One child in group
L2 first said "one two" for twelve rather than "ten two." Groups L1 and L2
required some practice before the regular ten form replaced the usual English
decade words reliably. Children in group M2 actually used the Asian ten form
before they were told about it by the experimenter. They had just made a block
arrangement and named it with block names (2 ice cubes 5 pancakes 4 licorice and
7 teeth), and they then produced the exact analogy with English words: 2
thousands 5 hundreds 4 tens and 7 ones.

In addition to the irregularities in how the multiunit of ten is said, English
words for four-digit numbers have two other irregularities--omitting the multiunit
word "ones" and omitting any mention of multiunits that do not exist in a given
number rather than stating "zero tems." Although the multiunits thousand,
hundred, and the various forms of ten are said, the word "ones" or "units” is not
said. It is more consistent to say the ones (2 thousand 5 hundred 4 ten 7 ones)
because each number is then followed by its unit. Children in all groups produced
such forms spontaneously. In groups H1 and L2, the experimenter said that you
don’t have to say the ones. In group L2, N asked why, and K asked if they could
say ones if they wanted to. M in group L1 ended a multiunit word with "and eight
ones" and then asked if you are supposed to say ones or just the eight. So children
are sensitive to this irregularity and seem predisposed to regularize the English
word form.

Zero. Written marks explicitly signal when a multiunit is missing by putting a
0 in that position, but such cases are not said as "zero hundreds’ or "zero tens.”
Instead, that unit is not said at all but must be skipped over, thus interfering with
the regular production of the ordered multiunits. Again, it would be easier for
novices to learn English words if each multiunit was named each time, and the
relationship to written marks would also be simpler. Children in two groups, H1
and M2, actually said such a zero form. Also, M in group L1, after they had put

4 According to the original design, group M1 was not given the Asian tens.
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in a 0 digit card for the hundreds, showed explicit awareness that the zero is not
said in English, "You couldn’t say like 2 thousand and zero. You couldn® say
something like that so it would be better just to say two thousand four ten four."

All of the groups spontaneously made at least one block array that omitted one
kind of block, except for L1 in which each child was in charge of one kind of
blocks so each kind was always used (the experimenter made a block array with
no flats for this group). In groups H1, H2, and M2 a child correctly used a written
zero for that block when making the marks for the block array with digit cards or
writing them on the magic pad, and there was no discussion of whether or why a
zero was needed. In groups M1, L1, and L2 the number was first written without
a zero (e.g., 249 instead of 2049). In L1 and L2 one or more children then argued
that there should be a zero. These arguments took two forms. One was the
observation that there were none of a particular kind of block (“there are no
ones"), so a zero needed to be written. The other was that the number without
the zero is the wrong number (a block array of four big cubes five longs seven
little cubes was written as 457, and K said, "It needs a zero because that’d be four
hundred fifty seven."). The first argnment addresses why you use a zero (to tell
how many of that unit there are), and the second tells why you must use the zero:
The marks show the wrong number if the zero is not there to push the single digits
into their correct multiunit places, unlike the English words where one could say
zero ones but it is not necessary, or even common, to do so. In group M1 the
experimenter precipitated this kind of argument by asking the group what the
blocks said ("two thousand forty nine") and what the digit cards said (249: "two
hundred forty nine"); the group decided that they needed a zero to show the zero
hundreds blocks in order to move the 2 into the fourth (thousands) place. The
forward and backward thinking and counting of places that is required to
understand this argument was nicely demonstrated by a discussion led by the
experimenter in group L2. English words are written down just as they are said
in order from left to right. But to read any given multidigit number, a child must
do a reverse right-to-left process in order to decide the name of the farthest left
place before beginning to say that number as an English word. This was described
by a child answering the experimenter’s question, "How do you know it is the
thousands place?" as follows: "Cuz the four on the end-that’s the one, and then the
seven is the ten, and the three is the hundred, and the two is the thousand." The
amplification of this response by another child beautifully captured the two reverse
processes that must be gone through to read a number: "Because thousands is
after--is before the hundreds." Thousands is after the hundreds in the initial
right-to-left assignment of multiunits but is before the hundred when the number
is said as an English word (the numerals are read from left to right).
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One other issue concerning zero arose in two groups. This is the common
attempt by children to make the written marks parallel the English words and
explicitly name each multiunit by using zeros to show the multiunit, that is, to use
cardinality (four positions show thousands) rather than ordinality (only the fourth
position shows thousands)(see the discussion in the introduction). Because two
thousand is written as 2000, or three hundred as 300, children want to write three
zeros after a number to show that it is thousands or write two zeros to show that
it is hundreds, yielding forms like 2000300405. A child in group M2 asked, "Why
don’t you put the zeros in for two thousand?" and a child in L2 similarly asked,
"Why didn’t I make zeros after my three hundred?" In the first case the child
spontaneously then said, "I see now." and the issue was not pursued. In the second
case the child asked again after the question was ignored. Another child
responded that the zeroes were not necessary because "you can tell (it’s a hundred)
because you know how many numbers there are (pointing to the three places up
to and including the hundred’s place).”

Use of commas. In the United States, a comma is used to separate groups of
three digits in a multidigit number. The comma is placed by counting each three
places from the right so that each three digits will compose one of the larger
multiunits based on a thousand that constitute the large English words. In the
United States these base-thousand multiunits are called thousand, million (one
thousand thousands), billion (one thousand millions), trillion (one thousand
billions), etc.’ The comma may make it easier to identify a 4-digit number as
beginning with the thousands to someone who knows how commas should be
interpreted. But it is an unnecessary feature of the written base-ten marks, arising
instead from the base-thousand structure of the English words and from a desire
to simplify perceptual processing of many numbers (other countries use a period
or a space for the same purpose). Commas were not used in any numbers or
problems presented to the children in this study. The issue of commas arose as
an extended topic of discussion in two groups. In group M1 two children
articulated a comma rule "Put a comma every three numbers," but they counted
from the left and wrote a number as 204,9 rather than as 2,049. The third child
Dh said that the comma should be on the other side, and they agreed. This
difference arose later when they all wrote on paper very large numbers to show
commas. The first two children wrote from left to right. They wrote three
numbers, made a comma, wrote three more numbers, made a comma, etc. This

® In Great Britain a larger sub-base of a million is used instead of one thousand; the words are
the same up to one million but then a billion is a million millions, a trillion is a million billions, etc.
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process will only work if you end with three numbers. Dh wrote his whole long
number, started from the right and made curves over each group of three
numbers, and then wrote in all the commas. Group L2 had an argument over
whether you have to write a comma. Children in each group sometimes wrote a
comma between the thousand and hundred places in the addition phase and
occasionally used them this way in the preaddition phase.

Ten or more of a given multiunit. The final issue confronted by each group in
ascertaining the relationships among the blocks, English words, and written marks
was how to write block arrays that had ten or more of a given multiunit. This is
a crucial issue in multidigit addition, for it arises whenever the sum of a given
multiunit is ten or more. This issue could arise in the preaddition phase if a group
made a block array with ten or more of a given kind of block and wanted to write
that block array in marks. In fact, all groups very early made such a block array.
In all but group M2 the experimenter for that case and several others restricted
the number of blocks by having children make that pile of blocks smaller. In
groups H1, H2, and M1 the children later made such arrays, and then modified
them in order to write the arrays in marks. Flats were stacked to make a big cube
and the thousands were increased verbally by one, and other kinds of blocks were
counted to make ten and the next larger multiunit was increased verbally, for
example, finding the value of 21 longs as follows: "200 (there were two flats), 10,
20, ..., 90, 100 (counting the value of ten longs by counting each one as ten), 300
(incrementing the original 200), 1, 2, ..., 9, 10 (this time just counting ten longs as
single units to get ten longs as another 100), 400 (incrementing for the second 100
made from longs)." Examples in group M1 included such large cases as these 21
longs and 30 small cubes. In group L1 this issue only arose in an array that had
nine longs. M said, "If they (longs) were ten, they’d be like that (points to flat)."
On the next block array, M then restricted the number of longs to less than ten,
saying, "or else we’ll be in the hundreds, and we don’t want that to happen."
Group L2 made an array with ten small cubes, and T wrote this as 3,3610. Three
children said that you couldn’t do a ten at the end because it has to go in the tens
pile, you’d have to regroup. Regrouping was for them a procedure done with
numerals; the discussion focused on "take the 1 and put the zero here." They did
nothing with the blocks. The experimenter asked, "What are those (the small
cubes) the same as?" B answered "one of those (a pretzel)," and N answered "a
ten." B put down a pretzel, and they wrote 3,37 (and later added a 0 to make
3,370). B then stated a general rule about making block arrays and writing marks:
"So you have to do any number under ten (her emphasis) cuz then youw’d just put
down one more of these (pretzel) and you wouldn’t need the ten (ones)."
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Group M2 embarked on a long exploration of this issue that extended over
substantial parts of the second and third days. On the second day this group of
five children made their second block array of five big cubes ten flats eight longs
and twelve little cubes. The discussion went as follows: Several children: "Five
thousand ten hundred." Da: "No, one thousand." U: "Wait, that makes six
thousand." Several children: "Six thousand eight ten twelve." The next block
array also had more than ten units that the children again read as teens ("seven
thousand five hundred six ten fourteen"). Three block arrays requiring no trading
followed, and then U made an array of three pancakes, four licorice, and twenty
nine teeth. The group’s pursuit of this problem over the rest of that day and part
of the next is given in Table 3. Everyone in the group recognized that, although
they could say twenty nine teeth, they could not write that many teeth in the usual
written marks. They generated several different interesting solutions to the
problem they posed to themselves in this situation: conveying in written form the
number of blocks they had. They eventually needed the help of the experimenter
to solve their original problem -- how to write that many blocks in standard marks
-- because their reformulation of the problem (writing the blocks they had) did not
solve the original problem of writing standard marks for those blocks. Their
version of the problem actually cannot be solved: standard marks cannot write the
blocks they had, standard marks can only write a value equivalent to those blocks.
The blocks can be traded to find this equivalent value that can be expressed in
standard marks. When on the next day they got into the same issue with a new
number, the experimenter focused them on the task of changing the blocks to
match their stated English word value for the blocks (see Table 3: they said "five
hundred" but wrote the 5 in the fourth position). They had traded flats for a big
cube on their first block array, so quickly saw its relevance here. They might have
been able to think of trading with less direct support than the experimenter
actually gave. This group went on in the addition phase to use this solution for
writing too many blocks in a two-part "add and then fix' addition method they
invented.

Establishing relationships among blocks, block words, English words, and written
marks: Discussion

The success of the block nominating and naming procedures in groups H2, M1,
and M2 in which the names for all blocks were nominated simultaneously indicates
that teachers do not have to be concerned and intervene immediately in a messy
choice process. In the groups in which the experimenter did not intervene much,
children were able to select sensible block names. All of the block names chosen



70

K.C. Fuson, J.L. Fraivillig & B.H. Burghardt

Table 3. Identifying and Solving The Problem of Writing Ten or More of a Given
Unit: Group M2

Day Problem phases
2 All  Three hundred four ten twenty eight-twenty nine!
T So, what’s the number?
Dh  (writes 3429)
T How come when Dh writes it on the pad it looks like three thousand?
Da I think he should write a zero instead of three. Then they would know
there’s no ice cubes.
U But then it would say 0 3
Dk (writes 3429 more neatly) So, who cares?
Da  Three thousand
U Three hundred - three hundred
Da  To me it looks like three ten, four hundred.

Da&N Three thousand, four hundred, two ten, nine
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We're wasting paper

T’s idea is good. Write 3 4 29.

But that’s the same thing as the boxes. We could have stopped a long
time ago with boxes.

OK, that’s how we’re doing it. How about we stop now?

(starts writing the number)

That’s the wrong way.

More solutions

Da,T,N Three hundred, four ten, twenty nine

So what’s this number, guys?

But it still looks like three thousand.

But see, this whole thing is underlined, so we can read it.

No we can’t.

(asks experimenter if she has any suggestions)

I want to see how you guys figure it out.

T have a different idea. I think I know what to do. (writes 300 4 ten 29
teeth)

I have an idea. (writes 3 4 29 with a bracket under the 3, the 4, and
the 29)

No resolution

That’s the same as boxes, again.

All we're doing is wasting paper.

I know. We could have stopped a long time ago. This is the first day,
too.

New similar problem

T But that’s not the number that we set up
T (to experimenter) But this is one number (points to 3) and this is one
number (points to 4) and this is one number (points o 29)
Experimenter’s question ("How would I know that?")
precipitates many marks solutions:
34X209 34 209 3 [4][2 9]
29
P 3 4 L T
3429 |3]4]29] 3 4 _29
O
Discussion of proposed solutions
U That’s what we did with the boxes before.
N That’s messy.
U No, it isn’t. It’s the same thing though.
Da  OK. That’s it, we’re writing it down.

The group made 5 flats, 3 longs, 17 small cubes which they wrote 5317
and said as "five hundred three ten seventeen ones."
That’s the same problem we had yesterday.
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Experimenter questions support solution

Exp Is there anything you can do with the blocks to make it look like five
hundred? (shifting children’s focus from trying to write the blocks in
nonstandard marks to trying to change the blocks so they can be written
in standard marks)

U Yeah - um - should put like a thousand down, take these away and put
five of those blocks (ice cubes) down

Da  What we could do with the magic pad is write hundreds and put an
arrow up to the five and then write tens and put an arrow up to the
three and then write ones and put an arrow up to the seveateen. That’s
what we could do and we can’t do that with the blocks.

T You put lines.

Exp Let’s concentrate on the blocks right now.

Da  What could you do to make the blocks lock simpler?

T You could take away some teeth to make it less than ten.

Exp Is there anything you could do with the ones you take away?

Da  You can make another problem out of it.

Exp Is there any exchanges you could make with the teeth and the licorice?

U Yeah, you take one of these (a licorice) and that will make ten (teeth).
Or if you take ten of these (teeth), it would be the same as that
(licorice).

Da  You could take ten of these (picks up ten teeth) and then put them over
here (in licorice pile) and then take one of these and just put them over
here or you could just take ten away (teeth) and put another licorice
there. Here, take ten of these away.

U You need seven left, so count out seven.

Da  You take ten away and put another licorice there. And that makes our
problem easier. five hundred four ten seven.

(short discussion about writing a zero before the number)

Da  But yesterday we used about twenty pieces of paper for one problem.

U That was my problem that I shouldn’t have even thought up.

Da  That took forever.

Note. Group M2 chose the following names for the blocks, listed largest to
smallest: big ice cubes, pancakes, licorice, and teeth.
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by the groups proved to be easy for the children to remember and use. We
wanted to observe this naming process and so allowed each group to choose block
names. In a classroom it is probably advisable for all children to agree on the
same names in order to facilitate communication among the children in that
classroom.

The level of spontaneous verbalizations about most activities was disappointingly
low, given the high verbal ability of many of these children. The discussions of the
ten-for-one equivalencies and of the number of small cubes in the flat and big
cube contained some good thinking and some complex arguments. But in general
these children did not spontaneously produce verbal responses that would be
maximally helpful to group members who did not understand. For the ten-for-one
equivalencies, the many statements using "these" and "those" rather than the block
names or English words required listeners to understand the referents for "these"
and "those” in a sometimes complex physical and social environment. The even
more frequent simple responses of "ten" or counts to ten required each listener to
know the question being answered by these responses. The use of zero in written
marks arose in all groups, and the issue of saying zero in English words arose in
some groups.® Children successfully used zero in all groups. However, there was
no spontaneous discussion or clear articulation of why zero is needed in marks but
not really needed in words. Group L2, when asked by the experimenter, came
close to such a discussion, so it seems likely that children at this level can clearly
articulate these reasons if the teacher initiates and supports such conversations.
Similarly, having children use multiunit words and block names to give full
statements of any mathematical relationships would increase the ability of weaker
or momentarily distracted group members to follow the mathematical discourse
and might increase the accessibility of these relationships to the speaker.

The children’s discussions of the equivalencies and their use of English words
and block words with the marks underscore a limitation of English in this domain.
The English language does not clearly differentiate between the use of the word
"ten" as a unitary cardinal number telling how many there are of some unit and its
use as a single multiunit of ten collected units that serve as a new higher unit.
French, Spanish, Russian, and many other European languages do differentiate
between these two meanings by providing a special ending for the single collected
new multiunit meaning” For example, "diez" is ten in Spanish, and "decena"

6 Experimenters in fact were to make arrays that required a zero if the children did not.

"1am grateful for helpful conversations with Robert Streit concerning this issue in several
different languages.
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means a group of ten. Some sense of the collected meaning supported by these
special endings is provided by the English word "dozen" which means a collected
group of twelve (a dozen eggs); "dozen" in fact sounds as if it comes from the
French special collection ending added to the French word for twelve: "douze"
(12) plus "aine." However, the existence of this differentiation in the language
does not necessarily mean that all users of that language comprehend the collective
meaning. Recent conversations with some teachers from Puerto Rico indicate that
the functional use even by teachers of the word "decena" may be, at least in some
cases, limited to a label for the tens position in a written multidigit mark and may
carry little or no cardinal meaning as "a group of ten." The common use of the
collected-ten meanings may depend on the use in a culture of the metric system
and the consequent frequent packaging of items into groups of ten or measures of
ten units, as is common in the Soviet Union, for example. Without experiences of
such actual collections of ten, or special experiences in the classroom, these special
ending forms may not have multiunit meanings.

When there is more than one ten, hundred, or thousand, the "s" in the plural
forms (e.g., five tens, eight hundreds) in English does provide a minimal cue that
one is talking about collected multiunits. Children in this study did frequently use
the English plural form just as they used the plural form for block words indicating
multiunits (e.g., four thousands six hundreds five tens two ones" or "four ice cubes
six breads five pretzels two sugar cubes"). But the fact that standard multidigit
English words drop the "s" and say instead “four thousand six hundred fifty two"
muddles even this possible difference, and it is not always easy to hear this plural
form even when it is said. This lack of differentiation in English of ten as the
number of multiunits and as a kind of multiunit, combined with the tendency noted
in this preaddition phase for children not to use the multiunit words, caused
communication difficulties and some addition errors in the addition phase.

Children’s behavior in this preaddition phase indicated that they are
predisposed to regularize the irregularities in English and generate full English
forms that parallel the block words and name each unit. Children used the Asian
regular tens words quite easily, though certain children and certain groups used
them more than others. Sometimes a child added the units word "ones” so that
every unit would be named and sometimes used "zero" to name a unit (zero tens)
rather that just omitting that unit. It may be much easier for children, especially
those not high achieving in mathematics, to see and use the multiunit structure of
the English words and relate the words to multidigit numbers if they use full
regular forms in the beginning of learning. Because none of the forms are "wrong"
(just nonstandard or unnecessary), they could be dropped when children are older
and understand the whole multiunit structure.
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It may be particularly helpful to use the Asian regular ten forms because the
English special words that hide the tens in two-digit numbers enable children to
persevere erroneously in situations whose ten-structure would be much clearer with
regular ten words. For example, the prolonged engagement of group M2 with
writing the 29 teeth (see Table 3) seems much less likely to have occurred if their
language said those teeth as "two ten nine" instead of as “twenty-nine." Saying the
ten suggests trading the blocks to simplify the block display or adding in those two
tens with the other tens. For saying words in the teens, the fact that one child in
group L2 first said "one two" for twelve rather than "ten two" suggests that it might
be better not to use the abbreviated form "ten two" (as Chinese do) but to use the
full equivalent of the later decade form for the teens: Tell how many tens by
saying "one ten two" or "one ten and two." Saying a full regular Asian form for
numbers with zeroes (e.g., saying 100 as one hundred zero tens and zero ones)
would also help to eliminate the cardinal/ordinal confusion that leads children to
want to write forms such as 100406 instead of 146 for "one hundred forty six." 1t
is the usual short-cut wording of 100 as one hundred, 10 as ten, and 40 as forty
that suggests such errors.

The equivalency question for the flats and big cube actually is ambiguous
because six flats (or four if you ignore the top and bottom) do "equal” a big cube
in the sense that one can make one big cube out of six flats (dimensions are off
by 0 to 2 cm depending on how you assemble the six flats). Because one cannot
tell just by looking whether the wooden big cube is solid (made of ten flats) or
empty inside (made of six flats), the former feature needs to be clarified from the
beginning. The phrases "make as much wood as inside the big cube" or "fill up"
(for the cardboard version that can be opened) might be better. The solid
meaning also can be addressed by using weight, which some children did, for
example, "See this (ten flats) is just as heavy as this (wooden big cube) except this
(big cube) is much easier to carry around." One reason so few children had this
possible confusion may be that, because the flat/big cube equivalency was last,
children had an expectation that this relationship would be the same as the earlier
ones (a ten-for-one relationship) and that one would show it in the same way--by
stacking the smaller blocks next to or on top of the larger block. A new version
of the blocks that is recently available does avoid this ambiguity. The blocks are
clear plastic and fit together, so the big cube is seen to be filled with little cubes
and can be made by sticking together ten flats. The disadvantage of this version
is that they are somewhat difficult to put together and take apart, and the small
extra parts that enable them to fit together may be distracting.

Our results concerning these preaddition experiences clearly are limited by the
achievement level of these children and by our discovery that many children had
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place-value experiences with a different version of base-ten blocks in first grade.
Establishing these relationships would presumably take longer and need more
teacher support if all children were new to the blocks or were of varying
achievement levels. However, the ease with which many children handled these
ideas, and the high level of some spontaneous discussions, indicate that establishing
relationships among blocks, English words, and written four-digit marks is well
within the zone of proximal development of high-achieving children working in
groups at the beginning of second grade. If teachers support discussion of these
relationships, these children are probably able to articulate and explain clearly all
of these relationships. Without such teacher initiation and support, even these
high-achieving children do not spontaneously discuss all of the important issues in
these relationships or articulate them clearly enough for weaker children to
understand.

Results of the addition experiences
Adding like multiunits

_ Every group immediately added the like multiunit blocks. After making each
addend with blocks, they either pushed the addend blocks of each kind together
and counted all of the blocks of a given kind, or counted the blocks in place, or
used extra blocks to make as many sum blocks for each kind of block as were in
both addends. Evidently the visually salient collectible multiunits in the blocks
supported the correct definition of multiunit addition as adding like multiunits.
There was only one exception to this uniform definition of adding like blocks: One
child in group M2 suggested that the answer should be obtained by counting all
of the blocks of all kinds (he thus ignored the collectible multiunits in the blocks
and considered each block as one countable unit item).

All groups also added two four-digit written marks addends by adding together
the marks written in the same relative positions. In the groups that were clearly
linking block addition and written marks addition, this carried the connotation of
adding like multiunits. For some children, their written multidigit procedure
already entailed the understanding that they were adding English multiunits (ones
to ones, tens to tens, hundreds to hundreds, and thousands to thousands). For
other children, multidigit addition was a procedure carried out on concatenated
single digits, so these actions were based on a procedural rule and did not imply
understanding of adding like multiunits. Evidence of these different bases for
marks addition was not as clear as for multiunit understanding of the next
component of multiunit addition, trading when oane has too many of one kind of
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multiunit, and it is linked to this trading knowledge. Therefore this issue will be
discussed further in the section on trading.

The incorrect block arrays always involved making the first digit out of big cubes
(for example, 287 would be made from 2 big cubes 8 flats and 7 longs or
sometimes 7 units), and the incorrect alignments always aligned on the left.
Although these both resulted in a failure to add like multiunits, such errors
seemed to stem from the left-to-right manner in which block arrays were made
and marks were written. Although block arrays can be made in any order from
written four-digit marks, almost all block arrays for all addends in all the addition
problems were made in the same order in which marks are written and English
words are said: from the big cube to flats to longs to units. Only 5 out of 118
addends were made in any other order. Group H1 made two block arrays in the
order longs, units, big cubes, flats and one array from units to big cubes, and
group M1 made two arrays from units to big cubes. The initial several problems
worked by all groups in which two four-digit numbers were added seemed to
induce a "set" towards making a block array by using the big cubes first. Thus,
when seeing a written multidigit number, children who had done several four-digit
plus four-digit problems had a predisposition towards making the first number on
the left out of big cubes. Similarly, there was a predisposition for groups who
were writing the addends vertically to start writing the 287 under the 3458 on the
left, putting the 2 under the 3.

Table 4 shows the relative correctness of making block arrays and aligning
written marks problems for the problems in which the two addends had different
numbers of digits. The performance reflected in Table 4 is group competence, not
individual competence. Some children in some groups also verbally suggested
making the three-digit number using the big cubes or writing the numbers aligned
on the left, but they were ignored or corrected by other children. All but two
block arrays (18 out of 20) were made correctly initially or were immediately
corrected by some group member, while a lower proportion of marks problems (15
out of 24) were written in correct alignment. When incorrect marks problems
were corrected, children justified or explained their correction by using multiunit
words: by saying the English words for the marks ("That’s two hundred not two
thousand") or by saying the block words ("That’s two pancakes, not two icebergs”).
Thus, thinking of the multiunit values by saying the marks in English words or
block words may be an effective way to reduce such alignment errors. Failing to
think of the multiunit values seems to be more of a problem with the written
marks than with the blocks, so teachers might suggest that children read problems
in English words and/or block words.
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Table 4. Correctness of Block Array and Marks Alignment for a Four-Digit and a
Three- or Two-Digit Addend

Block  Mark
Immediately made three- 13 10
digit number correctly
Made three-digit number 5 5
incorrectly but soon
changed by group
Made three-digit number 0 2
incorrectly but eventually
changed by group
Made incorrectly and 2 7

never changed

Note. The six groups worked a total of 24 problems in which one addend had four
digits and the other addend had three or two digits. Children worked 20 of these
problems with blocks and marks and worked 4 only in marks. The entries in the
table reflect group, not individual, performance.

Trading or putting: Solving the problem of too many of a given multiunit

All of the groups recognized the problem of having too many of a given
multiunit. This problem in fact arises only in the marks world: One can have as
many blocks of a given kind as one wants, but one cannot write down a blocks
display that has more than nine of a given kind of block. Thus, this problem really
only arises when blocks addition is linked to written marks addition. The
collectible multiunits in the blocks support the solution to the problem -- trading
ten of the multiunit with too many for one of the next larger multiunit, but the
problem presents itself in the marks world where writing down ten or more of a
given multiunit pushes the other written marks too far to the left (see group M2
wrestling with this problem in Table 3). Group M2, because of their earlier
extended experience, did indicate that they understood why they could not write
two digits for a given multiunit. No other group clearly explained why having ten
or more was a problem. Many children brought some awareness of this issue from
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their knowledge of written multidigit addition, but for many of these the
knowledge seemed to be formulated as an arbitrary rule such as "You can’t write
two numbers” or "You have to regroup (which meant writing little 1’s in specified
places)" or “You can’t have more than nine." These rule statements were never
accompanied by any hint of why this might be so or even that any justification of
the rule was necessary.

These children clearly are capable of understanding and articulating this
problem as did group M2; they do not have to memorize an arbitrary rule. Every
group in fact did present to themselves this problem when they first made block
arrays: Every group made at least one array that had ten or more of a given kind
of block. But in all groups other than M2, the experimenter did not allow them
to consider this problem and constrained block arrays to those that did not have
this problem. Thus, this problem could come up for initial consideration when
first making block arrays, and the recognition that writing two digits for a given
kind of block makes the other digits in the wrong place would then be helpful in
the addition context. When this issue arose in the addition context, children did
not spontaneously try to understand why writing two digits for a given multiunit is
a problem or seek to explain rules they had memorized. They needed outside
support to raise this issue and focus them on trying to explain why writing two
digits is a problem in the marks world. That group M2 easily saw this problem
indicates that it is an easy one to solve if it does get raised.

Most of the addition phase was directed toward solving the recognized problem
of what to do when there were too many of a given kind of multiunit. Each group
had a different experience with this issue, and the nature of the experience was
crucially affected by the extent to which the blocks addition procedures were linked
to the marks addition procedures by that group. An overview of the evolution of
co:rect block trading and correct marks trading in the sequence of solution
procedures for each group is provided in Table 5, and the addition experiences of
each group are briefly summarized in the following sections. In Table 5, the
nature of the trading in each successive block and written marks procedure is
characterized, and each procedure is classified as linked or not. In linked block
and mark procedures, children added or traded a given kind of block and marks
position simultaneously (different children doing the blocks and marks step) or
soon after each other before any other block or position was added or traded. In
unlinked procedures the children worked in separate unconnected block and marks
worlds. Either some children in a group worked on blocks while the others
worked on marks -- and there was no communication or synchrony between these
solutions -- or the whole group worked a problem in blocks and then in marks and
there was no connection made between the solutions.



80 K.C. Fuson, J.L. Fraivillig & B.H. Burghardt

Table 5. Accuracy and the Linked Status of Blocks and Marks Addition Procedures

by Group

Group

H1l B2

M1 M2

Block Addition
Accurate trade
Linked to marks 10,11

Not linked to 2,34,
marks 5,6

Correct sum but
not show trade
with blocks

Mentally added
the trade 1

Copy traded
answer
from marks

Added like multiunits
and leave sums = ten

Linked to marks

Not linked to 1,2,3,4,5
marks 6,7,8,9
Trade inaccurately

Linked to marks

Not linked to marks

27, 1,2,3,4,5,6,
7,9 7,8,9,10,11,
12,13,14,15

2,3,4,
45,5

2,89, 44567,
10,11 8,9,10,11
12,13,14

3.4

13 1,23

578

44,6
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Digit card/magic pad
addition

Accurate trade

Linked to blocks 1° 100110 7,78, 11,12,1314 12, 44567,
8,9,9 15 8,10 9,10°,11°,
12131415
Not linked to 44,7, 1234, 34 14, 13
blocks 89, 56,78, 6
10,11 9
Correct sum but not
show trade with marks
Copy answer 5,6 2 1,2,3,4,5,6, 2,4°
from blocks 7,8,9,10,11 6"
Copy answer
from indi- 2 13°
vidual papers
Mentally added 3 1,2,5 3,4°,6%
the trade 9,11
Trade inaccurately
Linked to blocks 5,78 4,44,
48
Not linked to 8 4 1,1,122 1,13, 1,1,1,2,
blocks 3,3,3,3,4, 10 2,3,8
4,4,4,5,5,
5,6,8,8,9

Note. Numerical table entries are the ordinal number of the problem. Many
problems had multiple solutions proposed and used, and different parts of a
problem may have been solved differently; each partial or whole solution is entered
in the table. Groups H1, M1, and L1 used digit cards, and groups H2, M2, and
L2 used a magic pad. Block counting errors and mark single-digit addition errors
are ignored for the classification of accurate procedures. In linked block and mark
procedures, children added or traded a given kind of block and a given marks
position before moving to another kind of block or position, and the actions in the
blocks word and the marks world were connected.

“Marks were on individual papers.

®These solutions were on individual papers and had some “unfixed” sums.
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Patterns over all the groups and important issues that arose in any group are
discussed in the main section following these group summaries (the Discussion of
the Addition Experiences). Some readers might wish to move directly to that
section. A brief overview of these group results is as follows, Children were much
more accurate in their block than in their mark trading procedures. Across the
six groups, only one group made any inaccurate block trades, while five groups
made inaccurate mark trades. Three of these groups made a mean of 13
inaccurate marks trades. There is not space in this chapter to describe each of the
solution procedures in detail; these are described in Fuson, Burghardi, and
Fraivillig (1992). The focus here is on the relative accuracy and ease of addition
with blocks and marks, and the nature of the relationships children established
between these two worlds. The amount of supportive or misleading verbal
descriptions and explanations, and the quality of such verbalizations elicited by the
experimenter, are also briefly summarized. Each of the groups established a
somewhat different relationship between working with the blocks and working with
the marks. The groups also varied considerably in the accuracy of their marks
procedures and in the number of different inaccurate marks procedures they used.
These paths through addition were influenced by the extent to which the dominant
and most socially skilled individuals in the group possessed and used concepiual
multiunit knowledge versus rote marks rules.

Group H1. In group H1, L found the block sum for the first addition problem
by looking at the two block addends and adding each kind of block, mentally
trading over to the next larger multiunit when necessary, writing these sums on her
paper under columns she made headed 1000, 100, 10, 1, and then making the block
answer from her written marks answer. On the next and all successive problems
on which block addition was done, whenever there were ten or more of a given
kind of multiunit, children traded ten of these blocks for one block of the next
larger size. There was relatively little discussion or justification of this block
trading throughout all of these problems, and many trades were made without any
verbalization. Each child at some time did make at least one comment articulating
the ten-for-one nature of the trade. For example, E said for the very first trade,
"There are twelve blocks (singles), so ten become one of the carrots (he makes this
trade and puts the carrot with the carrots in the top addend).” Examples from
the other children are: C: "Take one ten out of there;" L: "We took the ten
pancakes and handed them in for a Big Mac;" and N: "Thirteen tens. And an extra
hundred (adding a plate to the answer). And that’s three tens." The children
cooperated in physically making the block trades, indicating that they all
understood these ten-for-one trades well. Most of the time the blocks were not
related to the digit-card addition method. Frequently the girls did addition with
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the blocks while the boys did addition with the digit cards (or vice versa), and
there was relatively little discussion or linking of the two during addition (they
usually were on different parts of the procedure) or afterwards.

These children did not devise a complete digit-card solution to the problem of
trading until the sixth digit-card attempt (problem 7), when the experimenter said
just to do the digit cards. In the earlier digit-card procedures children simply
made digit-card addends and copied the sum from blocks or individual papers or
added the digit cards mentally or devised only partial procedures (problem 4). For
problems 7, 8, and 9, children showed the traditional algorithm by putting a card
containing the digit 1 above any column that received a trade. There was little
discussion or justification of the digit-card procedure or of written marks
procedures done on individual papers. When the experimenter did ask for an
explanation, these children did produce conceptual quantitative descriptions of
their addition procedures that indicated that they had at least implicitly linked the
block multinnit addition to written marks addition and that for them the traditional
algorithm involved trades of ten of one kind of multiunit for one of the next larger
multiunit, not just writing little 1’s. Thus, they were capable of levels of discussion
and explanation that were much higher than those generated spontaneously in the
group. However, even these children would have benefitted from explicitly linking
the blocks to their marks procedures, as when on problem 8 E changed the tens
sum (which came from 7 + 3) from 0 to 1, saying, "I never can remember if you're
supposed to put a 1 or 0." He soon changed it back, but this would have been a
good opportunity for the experimenter to ask him to answer his question by
thinking about the blocks.

Group H2. Group H2 immediately defined "adding blocks" as counting all the
blocks for a given multiunit or pushing the blocks together, but, until the tenth
problem, they did not do a full trade when they had ten or more of a given kind
of block: The blocks answer for several days had at least one multiunit with ten
or more blocks. On the magic pad, they used the traditional vertical algorithm
writing the 1’s above the next left column. They all knew this algorithm before the
addition phase began. They sporadically linked the blocks and magic pad addition
for one or two columns, but they did not link or really even compare a whole
blocks addition and answer to their magic pad written addition until the tenth
problem, worked during the fifth day of addition. On that problem M, who had
from the beginning focused more on the blocks and tried to link the blocks and
magic pad more than any other group member, related her whole individual
written marks problem to the blocks problem by describing blocks addition using
blocks words and showing what marks she had written for each kind of block. The
experimenter asked about the difference between the blocks answer and their
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individual magic pad answers (these all showed traded answers for tens and
hundreds while the blocks were not traded), and the group immediately traded ten
skinnies for one flathead and ten flatheads for ome fatty. The group then
spontaneously traded blocks on the next problem. No one in this group ever
spontaneously gave a full conceptual explanation of trading, and such explanations
were not elicited by the experimenter. Their later subtraction work indicated that
they were capable of high level thinking and did have ten-for-one conceptions of
trading,

Group M1. Group M1 quickly constructed accurate blocks addition, trading with
the blocks on the second and all subsequent problems. They began with the
blocks linked to the digit cards, and almost constructed a correct, fully linked,
addition procedure on the second problem, where discussion of the blocks
hundred/thousands trade led them to make a correct digit-card irade instead of
writing the hundreds sum as two digits. They did not spontaneously make a
similar blocks and digit-card link for the ones/tens trade, and so ended with a
blocks answer of 5376 and a digit-card answer of 53616. On the next day they did
a complete correct blocks addition with trading, and then moved to the digit-card
world, where they never connected the digit cards to the blocks. This separate
pattern continued for four more problems over three more days. During this time
they generated multiple incorrect digit-card marks procedures, suggesting or
carrying out as many as four different incorrect procedures on one problem. On
three of these days they also wrote marks problems on their own individual papers.
Much of the time these individual solutions were different from the digit-card
solution showing at that time, and the incorrect procedures circulated among the
group members like a virus, popping out on the digit cards or on individual papers
with little predictability. For most of this part of the addition phase, these children
were operating in three different unrelated worlds: the blocks world in which they
carried out correct multiunit addition and seemed to understand their trading
procedures, a digit-card marks world, and an individual paper marks world.
Occasionally they even operated in a fourth world, the problem card on which the
problem was written horizontally, because they would discuss a procedure by
pointing to that card, and the discussion or proposed solution might differ from the
solutions in the digit cards or on individual papers.

On problems 5 and 6 the experimenter tried to have them connect the biocks
to the marks procedures by having them talk about the marks procedures using
blocks words; on problem 5 they actually used blocks, and on problem 6 they just
used block words. But they did not carry out the linking consistently and
continued to use wrong marks trading procedures. Finally on problem 7 the
experimenter enforced block and digit card links, making the children relate their
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procedures column by column (e.g., as soon as they added and traded the unit
blocks, they had to show that in the digit cards). They carried out correct linked
methods in both worlds. For some parts of the problem, they even constructed
two different correct linked methods (increasing the bottom addend by one and
the standard algorithm of putting the traded new multiunit block above its
multiunit column). On the next day the experimenter asked them to do the
digit-card addition while saying block words. As long as they said block words,
they traded the digit cards correctly, beginning by using the traditional algorithm.
But they stopped using block words, and then reverted to their most frequent
wrong digit-card procedure (in which the ten from any two-digit sum was written
above the tens column because it was a ten). The experimenter again forced them
to use block words, and they solved the problem correctly in two ways, using the
traditional algorithm and increasing the top number by one to show a trade. Each
of these procedures was described by two different group members using block
words.

On the next day, the experimenter continually had them describe the digit-card
actions with block words (the child doing the digit cards was a "digit-card robot"
that could only move after the blocks had moved) and they did a digit-card
procedure tightly linked to their blocks solution. They traded correctly in blocks
and digit cards and described their digit-card trades in block words except for one
long digression in which they used English words, leading two members to argue
for the procedure in which the "ten" from any two-digit sum (e.g., the ten from
8 + 7 in the hundreds column) is written above the tens column. They then all
worked the problem on their individual papers and all got the same answer; until
they were forced by the experimenter to link the blocks to the digit cards, at least
two children on every problem did incorrect marks procedures on their individual
papers, One child spontaneously used Asian tens to read his answer aloud: "four
thousand two hundred one ten nine" (this was the one group that were not taught
the Asian tens.) The children then did another problem individually on paper,
getting the same correct answer. They all used the traditional algorithm, but there
was not time to discuss it using block words.

Group M2. The five members of group M2 cooperated very well throughout the
addition phase, kept the blocks and magic pad procedures completely linked
throughout this phase, and invented the only correct nonstandard marks procedure
used for any length of time by any group. From the very first problem, they added
one kind of multiunit block by pushing all of them together, wrote that sum on the
magic pad, pushed together another kind of blocks, wrote that sum on the magic
pad, etc. This resulted in at least one two-digit answer for every problem. The
group then "fixed” this answer, trading ten of any block for one of the next larger
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block wherever possible. For ten problems solved over four days, they copied the
fixed answer from the blocks onto the magic pad. Initially they did all the block
trading and then copied the whole traded answer. But these group members were
very conscious of keeping the blocks linked to the magic pad, and someone beeped
whenever some action with the blocks was not immediately recorded on the magic
pad (this was supposed to be the modus operandi for all the session 2 groups).
This linking soon led them to write each intermediate answer after each trade.
For example, for 1947 + 4185, they wrote each fixed answer as they changed them;
they changed 51012 12t05112 12 t061212t0 6 132. All members clearly
understood their two-phase addition method. They called the second phase "fixing"
or "changing" the answer and realized that this phase was necessary in order for
the marks not to show an answer that was too large (recall that this was the group
that spent a long time in the preaddition phase figuring out how to write a block
array with 29 units).

However, they did not really reflect on the marks procedure itself, and the
successive traded answers were often written unaligned below the problem, or
scattered across the page, or even on a different page from earlier answers and
from the problem so that such reflection was not easy to do. On problem 9 the
answer was written after all the trades were made because there was no official
writer. One child did not understand this answer, and other children explained the
answer using English words to explain the fixing that had been done while pointing
to the magic pad problem. On problem 10 and 11 they did the problems with
blocks and recorded on individual magic pads (pieces of paper). The child making
the blocks for problem 11 put out one too many flats and one too few longs. N
added the columns on her individual paper rather than writing the announced
block sum, as had been done on earlier problems and was done by other children
for this problem. She noticed and stated that her sums were different from the
block sums. The group decided that the block sums were wrong and corrected
them, and then fixed the magic pad problem. Thus, at this point they could carry
out the first phase of their addition procedure just in the marks world by adding
each column of marks.

To support reflection on trading in the marks procedure, the experimenter
began the sixth addition day by showing the group their unfixed and fixed marks
magic pad answer from the day before and asked them how they could fix such an
answer without actually doing the block trading. The subsequent conversation
included many descriptions of imagined individual block trades that related to
particular marks, and children could write the marks trades if they thought about
the blocks for that particular trade. In response to the experimenter’s repeated
request for a marks procedure that did not involve thinking through the individual
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block trades, two group members evolved a method in which the 1 to be traded
was written above the sum to the left and a small x was put below the 1 in the
sum. The fixed answer could then be written in one step by increasing each sum
number that had a 1 above it (each 1 reflected a ten in the column to the right).
This written procedure was described in block words, so it was clear that these
children understood the traded 1 as ten coming from the right. For example, an
explanation of the new procedure of writing the 1’s above the sum to the left was:
"I took ten of these (teeth) and put one licorice up. Then I took ten licorice and
put one pancake up. Then I took ten pancakes and put one ice cube up."

Over the next two days the experimenter supported a fading procedure in which
children increasingly worked in the marks world while still relating the marks to
the blocks by describing whatever they did with the marks in blocks words. On
problem 12 they described the blocks trades before they fixed their marks answer.
For each of the final three problems they first solved the problem on their
individual magic pads and then did the problem with blocks and discussed the
problem. On the first such individual problem, solutions ranged from completely
correctly fixed problems to partially correct fixes to sums not fixed at all (e.g.,
21510 8). The last two problems had almost completely correct fixed solutions
by the three children (the weakest three) present on this last addition day; there
were two errors (one sum with one too many and one sum with one too few) in
the 18 fixing steps these three children did on these two problems. Again there
were full explanations in block words of the marks trading, and both group magic
pad solutions integrated the group’s fixing procedure with the traditional algorithm:
the two-digit sums were written below the problem, 1’s were written above the
problem in the columns to the left where necessary as in the traditional algorithm,
and the fixed answer reflecting the sum of these I’s and the unfixed sum in that
column was written below the unfixed sum. In the final solution N also wrote little
x’s below the ©’s in the unfixed sum because "I just wanted to show what I put up
there when I carried.”

Group L1. Group L1 immediately added like blocks, but they did not trade
blocks on the first problem. For a long time, the whole group was driven by
procedural rules and usually used concatenated single-digit words in describing
their marks procedures (e.g., "Put the two from the twelve there and put the one
at the top."). On the first problem they suggested or did with the digit cards two
incorrect and two correct trading procedures, a correct one of which was linked
to the blocks (looking at the twelve tinies led D to take away the 8 and 4 digit
cards in the ones column, replace them with a digit card 2, and replace the digit
card in the tens column of the top addend by a number one larger: change a 3 to
a 4). On the second problem the two girls traded blocks from the ones to the
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tens, used the traditional algorithm with the digit cards, and clearly described the
trade both in English words and block words. They also traded the blocks
accurately for the hundreds/thousand trade. D was the leader in the mathematical
aspects of these activities, while M was more socially dominant but was the
mathematical follower. Their physical trading procedure involved counting as
many blocks as the number of ones in the sum and moving them aside to keep
them for the block answer, removing the remaining ten blocks, and adding one of
the next larger block. For example, for 7 + 6, they counted three pancakes and
moved them aside, removed the remaining ten pancakes, and added in one big
block. The two boys did not understand the hundreds/thousand trade, and the
girls only described it in single-digit terms or described their counting actions
literally. This led the boys, and the whole group thereafter, to describe trades as
"take away three" instead of saying anything about the ten traded blocks. In the
third problem one block trade was made and the other was described but not done
because the boys were being silly. The digit-card answer was obtained by mentally
trading and adding in the extra multiunit to that sum.

Then began a six-problem sequence over five days in which the most dominant
member of the group, M, imposed an incorrect procedure on the group. M
reacted to the correct digit-card solution of problem 3 by carrying out her new
procedure instead. This procedure stemmed from the "take away" language used
in the early block trading and a rule repeatedly stated by M: “You can’t have ten
in any column.” In M’s procedure, when the sum of any column was more than
nine, the addend digit cards were taken away and replaced by a 9 digit card, nine
blocks were left in that column, and the rest of the blocks were thrown away. This
resulted in answers with many nines in them (e.g., 4995 and 6999). Everyone
agreed with M’s rule (you can’t have ten in any column), but there were repeated
rebellions over the five days as various group members objected to the nines
procedure and tried to discuss alternative procedures. M was very domineering
in her responses to this resistance, and usually won by stating her rule. But several
times she expressed frustration and said that she did not understand what she was
doing, and also proposed substantive objections to her procedure (e.g., when
someone else did her nines procedure with the blocks, she said, "You can’t just
throw some blocks away. You have to use them.”) Almost all of the discussions
of proposed correct procedures and of the nines procedure used single-digit
procedural words, and the multinnits in the blocks were not used by the children
in this discussion.

On problem 8, the experimenter focused them on the blocks, asked why they
threw away one rectangle (they were making 7 + 3 = 9 with the rectangles), and
asked if they could do something with ten of the rectangles instead of just throwing
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one away. M immediately responded that that was what she had been trying to
do earlier when "I was trying to explain that we should put the one in the other
column." (i.e., do a traditional marks trade); she had proposed this earlier when
they were trading. Over this and the next problem the experimenter supported the
children’s block trades, sometimes perhaps giving suggestions before it was
necessary. On the final two problems the children did the block trading
independently and spontaneously, but they never evolved a digit-card trading
procedure to show the trades. They added in the trade mentally without showing
it with a marks 1. This may have partly been because their digit-card procedure
was to take away the two addend cards and replace them with the sum card.
Thus, in both the blocks and the digit cards, only the answer showed at the end of
addition. Three of the four children did the same marks procedure on their paper
as with the digit cards -- they added in the trade mentally and did not show it with
the traditional 1 mark written above the top addend. The children never
spontaneously gave a full explanation of the marks procedure in English words or
blocks words, and such explanations were not elicited by the experimenter.

Group L2. From the first problem the five children in group 12 added like
multiunit blocks, though they continued throughout the addition phase to argue
about whether they should show the sum with extra blocks or just push the addend
blocks together. For the first three problems over two days the added blocks were
not traded or linked to the magic pad written marks procedure. Various incorrect
trading procedures as well as the correct traditional procedure (called regrouping
by the children) were done on the magic pad. "Regrouping" for all the children
involved writing a little 1 somewhere. They always referred to the regrouped
number as a one (never as a ten or hundred or thousand) and never explained
what they were doing or why. A typical such interchange is the following: N:
"Well, then what’s the one there for?" T: "It’s just because you regrouped, and
you keep the one there for a little mark."

On the third addition day (problem 4) the experimenter emphasized that they
had to write on the magic pad each time they did something with the blocks and
enforced those links throughout the problem solution. The experimenter also
asked children for explanations several times during the problem solution;
explanations of particular actions with the blocks or marks written on the magic
pad were seldom given spontancously. There were three trades required by this
fourth problem, and each was discussed at length by the group. For each place in
which a trade was needed, some children suggested or physically did a ten-for-one
block trade or put ten of one block together in the column to the left. Discussion
of these trades often used ten to describe the 1 written on the magic pad.
However, for each trade at least one marks magic pad or blocks procedure
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stemming from a regrouping notion as writing a little 1 somewhere was also
suggested or done; these were always described by using procedural descriptions
of writing single digits somewhere. The children were solving the problem from
left to right, so some wanted to write the 1 above the column to the right (a
correct procedural analog of the usual right-to-left solution: write the 1 above the
next column to be added). The children who focused on the block values and
block trades and those who focused on single-digit marks regrouping varied across
the problem solution. For each place, children were eventually convinced by the
blocks and by the explanations of the blocks trades, and they agreed to trade the
blocks and agreed on the correct marks writing of these trades.

Except for marks errors on problem 8, the children solved ten more problems
over five more days in which the blocks were traded accurately and a correct
written marks procedure linked to the blocks trade recorded these trades. The
group solved problems left-to-right and right-to-left and, at the suggestion of the
experimenter, did some problems both ways in order to decide which way they
thought was best. This issue for most of the addition phase was a boys against
girls issue, with the boys wanting to add left to right. In this group the two boys
happened to be the weakest mathematically; whether this was related to their
preference is not clear. They decided by the end that right-to-left was easier
because they did not have to cross out sums they had written and write new ones.

This part of the addition phase was not as smooth as indicated by the uniformity
in Table 5. Although the group worked hard and well over the whole period,
there were continuing controversies about who got to write what, who got to do
each kind of block (five children and four blocks meant one person was without
blocks), whether to begin on the left or on the right, and whether to use exira
blocks or just push the blocks together. Some of these controversies were carried
on simultaneously, and the discussion became quite confused. The experimenter
needed to intervene at times to facilitate their resolution of these issues. As in
group L1, these children also rapidly moved toward a procedural take-away
description of the block trading in which the trading was not described and ten was
not mentioned. Instead, only the number of blocks remaining was stated: for
twelve pretzels, "Leave two out, take away the rest." This was more efficient than
counting ten and taking them away and was based on conceptual knowledge:
twelve consists of ten and two, so if we count two and take the rest, we will be
taking ten. But for the two weakest group members, the failure of the
conceptually strong group members to give conceptual explanations, or even
descriptions that included the word "ten," for the block trades as they were carried
out meant that these members still retained their procedural single-digit marks
regrouping orientation along with the new blocks trading procedure and that they
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could be quite fuzzy about the ten involved in the trade. Once the experimenter
asked the group how many were left after they had taken away the ones of the
two-digit sum, and the answers "nine" and "eleven" were given. On the last day of
the addition phase, the experimenter asked each group member to give block word
and English word descriptions of the block trading when they were just doing
marks problems. Three of the members gave several good explanations that
indicated that by now the marks procedure was no longer just marks single-digit
regrouping but was firmly grounded in conceptual multiunit quantities. The two
weakest members could not consistently give such explanations. Their linking of
the blocks to the marks would have been facilitated by conceptual multiunit
descriptions from the stronger group members rather than the short-cut procedural
take-away description of block trades.

Other aspects of multiunit addition

The other component of multiunit addition, single-digit addition of each
multiunit, and the technical aspects such as copying the problem, writing digits, and
counting the blocks did not present much difficulty to these children. These
children either knew single-digit facts or had fairly rapid solution procedures for
finding them (such as sequence counting on). Thus, adding like multiunits in the
marks world was fairly easy when they began to fade into just doing the marks
problems without the blocks. One problem was miscopied from the problem card.
Blocks were miscounted in making the block addends several times. These
sometimes were caught quickly and other times resulted in long derailments of a
problem solution because the source of the difference between the blocks and the
marks was not seen immediately. Such errors helped us to ascertain which
children were working from the blocks to the marks and which were only in the
marks world (the marks of the former reflected the incorrect number of blocks),
but these derailments were frustrating to the groups. The block addends and sums
also sometimes became incorrect during the solving of a problem because children
played with blocks in the problem (and removed them in so doing) or because the
block problem became quite messy and the blocks in the problem merged into the
nonproblem blocks in the block bank reserve.

Total time of the addition phase
Groups H1 and H2 took five days for the addition phase, and all of the other

groups took eight days. During this time Groups H1, H2, and L1 solved 11
problems, Group M1 solved 9, and Groups M2 and L2 solved 15 problems. Thus,
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the high-achieving groups averaged about 2 problems per day, while all the others
averaged from 1 to 2 problems a day. The two high groups did have fairly good
conceptual understanding of marks addition at the end of that time, though the
experimenter did not force full linked procedures or full conceptual explanations
by everyone in both groups, partly because she felt that these children had good
understanding. All of the other groups were moved into the subtraction phase
earlier than was ideal because of our contract with the school that required us to
do subtraction as well as addition within the allotted time.

Discussion of the addition experiences
Linking the blocks and marks

The purpose of base-ten blocks is to enable children to construct conceptual
multiunit structures as meanings for multidigit written marks and English number
words. Their function in addition of multidigit numbers is to enable children to
use their conceptual multiunit structures to understand how to add multiunit
numbers and, eventually, how to carry out meaningful written marks addition
without needing to use the blocks. To facilitate both of these goals, each
experimenter was supposed to establish and enforce linked procedures in which
blocks addition was tightly linked for each kind of multiunit to marks addition with
the digit cards (first session) or on the magic pad (second session). At the
beginning of the addition phase each experimenter gave such linking directions -~
that as soon as children did something with the blocks, they were to do that same
thing with the digit cards or on the magic pad. Because children in session 1
frequently violated this directive, the session 2 children had the further linking
directive that each child was to beep whenever something was written on the magic
pad that had not been done with the blocks or something was done with the blocks
that was not written on the magic pad.

In spite of these directions all groups, except group M2, did not link marks
addition to blocks addition. For some groups this separation continued for days.
When children were functioning in a marks world separated from the blocks
worlds, this unlinked marks world proved to be a fertile ground for generating
many different incorrect addition procedures (the incorrect entries in Table 5 are
described in Fuson, Burghardt, and Fraivillig, 1992). The group M1 children on
some days were even functioning, at least briefly, in four different unlinked worlds:
blocks addition, digit card addition, marks addition on their individual papers, and
marks addition on the horizontal problem card. In all groups, when the
experimenter imposed these links after children had devised and persisted in

Number Words, Multiunit Blocks, & Multidigit Addition 93

incorrect marks addition, one simple directive was not enough. Children might
record the marks for the block addition of one or two kinds of multiunits, but the
blocks and marks would then become separated. The experimenter had to
continue to monitor and support linking in order for children to execute a fully
linked procedure in which each addition with blocks was immediately recorded.
Such linking support was necessary for at least one day, and in some groups, for
two days. Children then seemed to be able to carry out a linked addition solution
without any support.

There were several identifiable sources of this difficulty in linking. First,
spontaneous comments by children in some groups indicated that children
constructed different interpretations of the chunks involved in the experimenter’s
linking directive. Group M2 wrote down each digit as a block array was made; the
other groups usually wrote the whole multidigit number after the blocks were
made. One child in another group argued that they should not write the first
addend number after making it with blocks because they "had to make the whole
problem (i.e., both addends)" before writing it. Thus, the crucial linking of writing
the result of adding and trading (if necessary) one kind of block needs to be
clearly articulated, emphasized, and monitored by the teacher.

Second, the practical division of work sometimes contributed to this lack of
linking. Who got to do what, and when, was an extremely important and
emotionally charged issue in every group (except perhaps group M2, which, under
an effective and fair initial leader, gunickly evolved an atmosphere of equal
participation). There were long arguments in many groups about turns and
fairness. In most groups the leader chose who got a turn at something. In some
cases these decisions were based on who had not yet received a turn, but in many
cases the choices seemed to reflect friendship or criteria other than equal turns.
A time-consuming counting thyme was chosen as a fair procedure in one group.
Sometimes a whole problem would be worked by one child chosen by the leader;
linking then depended upon that child, and to a lesser extent, on the rest of the
group. Sometimes some children would do the blocks while the others did the
digit cards (e.g., girls the blocks and boys the digit cards); this set-up proved to be
quite difficult to link, with each subgroup having its own momentum. To facilitate
participation by everyone, the experimenter for groups L1 and L2 instituted the
agreement that each child had one kind of blocks. This meant for group L2, with
five members, that one child did not get to do anything or wrote on the magic pad
(a potential source of unlinking as this child might move ahead of the blocks or
lag behind the block solution). Distributing the blocks in this way did involve
everyone on every problem and worked fairly well, but children sometimes went
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out of turn or were so involved in the problem solution that they did another
child’s blocks (with consequent protests).

Third, at least initially, the direction of the link from the blocks to the written
marks--and the consequent status of the digit cards or magic pad as the written
record of the blocks procedure--was not emphasized enough. The fact that many
of these children already had a procedure for adding written marks also interfered
with establishing the link in this direction because there was some tendency to use
the written marks procedure they already knew and make the backwards link from
the marks to the blocks. Nor was the purpose of the blocks underscored
sufficiently, which was to enable children to construct written marks procedures
they could understand, explain, and defend conceptually in terms of attributes of
the multinnit numbers they were adding. The learning task should have been
presented from the beginning as one of using the blocks to help explain in terms
of the blocks, and in English words, why one or more written marks procedures
worked. Without these needed emphases, the children assimilated this task into
their usual school mathematics set: Learn how to do something -- add with the
blocks and add with the marks -- and these procedures do not need to be
connected or explained except by rote rules. The emphasis on explaining why a
marks procedure works might also have elicited much more discussion and
explanation than these children generated spontaneously.

Fourth, the relatively small space shared by groups H1 and L1 meant that the
blocks problem and the digit-card problem were crowded together and sometimes
children did not have room to lay out the digit cards exactly as they had laid out
the blocks. Thus, sufficient space must be provided to support linking.

In all groups in which the experimenter imposed links between the blocks and
the written marks, these links did prove to be sufficient to direct a correct marks
procedure and to eliminate incorrect marks procedures that were done before the
links were made. The collectible multiunit quantities in the blocks were salient
enough to direct and constrain correct block trading, and any block trading was
easily recorded as a written marks procedure. Block trading always involved a
ten-for-one trade, but the one next-larger block could be placed in various places
in the block problem. No group ever made any incorrect block trades when they
approached the trading problem within the block world. Some children needed
their attention directed to the collectible multiunits as a potential source of the
solution to their problem of having too many of a given multiunit, but once
attention was focused on this feature of the blocks, all children saw the sense of
block trading immediately. No one ever objected to a block trade, unlike
objections or reservations that were voiced about the incorrect marks procedures.
Even the weakest members could think fruitfully about the block trades, as with
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one of the weakest members of L2, who said after the first block trade was made
(this happened in a case in which the sum of the hundreds was exactly ten flats,
so all ten flats were traded for a big cube), "I don’t like this idea if we go put ’em
all on." In this case the trade had been ambiguous and could be interpreted as
trading ten or trading all of the blocks; this child was checking to be sure that they
were doing the former and not the latter.

The behavior of group M2, which most clearly exemplified the desired
blocks-to-marks link approach, reveals another function of a teacher that might be
necessary during the fading procedure to the marks. For several days, these
children did not reflect on the marks procedure at all and often did not even
record their blocks addition in such a way that they could really reflect on it; they
wrote the successive fixing answers on different pages or disorganized all over the
problem page. Therefore a teacher should to monitor the recording process to
ensure that it is eventually done in such a way that children can reflect on what
they are doing in the marks world. Children may also need to be helped to do this
reflection in the marks world -- still strongly connected to the blocks world by
blocks words -- to facilitate the fading process from the blocks to just the marks
but with multinnit meanings attached to the marks.

The final step in the fading process is to think about the blocks while doing the
marks procedure. For children who had instruction in which the blocks modelled
the standard algorithm, this step proved to be very powerful in helping those who
later started to make errors in the marks procedure self-correct these errors
(Fuson, 1986). The collectible multiunits in children’s mental images of the blocks
were sufficient to direct them to a correct trading method (when they made an
error, they were asked to think about the blocks), and they verbalized these
corrections with block words or English words or mixtures of the two. Although
in no group was there a great deal of spontaneous verbal description of the block
trades in block words or English words, most children who were asked by their
experimenter were able to make such descriptions while looking only at the marks
procedure. Weaker children were not always able to do so. This suggests that it
would be very helpful if the task of using blocks included describing and explaining
what one is doing with the blocks. This would mean that initially the abler
children in a group would give full block multiunit descriptions of their block
trades, enabling the weaker children to follow the block trade and link it to the
written marks recording. With such modelling, the weaker children could become
able to verbalize their block actions. Describing the marks addition in block words
would help ensure that children were constructing and using multiunit conceptual
quantities for those multidigit numbers instead of the inadequate single-digit
conception of those numbers. Verbalization would facilitate all phases of the
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linking process and support children’s use of the blocks to monitor and self-correct
errors that might otherwise creep into their marks procedures.

Aspects of helpful verbalization

The previous section described several aspects of verbalization that can help
establish the initial links between blocks and marks addition and then support the
reverse marks-to-blocks link mentally when the child is no longer using blocks.
The importance of initially emphasizing explaining and justifying block and mark
addition--not just saying what one did, but saying why one did it or could do
it--was also discussed. This section focuses on other results concerning
verbalization.

Children may initially need the teacher’s support to say the multiunit word as
well as the number of multiunits. As in the preaddition phase, many spontaneous
descriptions of the block trades named how many one was trading but did not
name the multiunits involved in the trade: "I'm taking ten and putfing one here."
Perhaps because of the lack of differentiation in English between these two uses
(as in diez and decena in Spanish), the failure to say the multiunit word after ten
(ten whats) led children to confuse the function of these two meanings of ten (the
unitary ten telling how many of a multiunit and the multiunit ten in the second
position). Such confusions led to the prolonged use in group M1 of the incorrect
marks procedure of putting all trades in the tens column. Each 1 was written
above the tens column because it was one ten coming from the sum of the two
numbers in a column. Thus, the ten (the number of a particular multiunit) went
to the tens column (a kind of multiunit). As soon as these children consistently
focused on the kind of block involved or on the multiunit word (ten whats?), they
saw that ten hundreds or ten tens would not go to the tens column (would not be
one multiunit of ten). The confusions from not saying the multiunit word were
briefer in other groups, but children did other combinations of these two functions
of the word ten. For example, "OK, six (carrots) plus ten (actually one traded
carrot, a ten multiunit) is sixteen." Using block words is one powerful way to
reduce these confusions, because the block words say the multiunit quantities and
the ten will tell how many of a block there are.

For all mathematical quantities children learn about after small whole numbers,
the small whole numbers in fact are always used in special new ways to tell how
many of some particular new kind of quantity. In multidigit numbers it is how
many of larger and larger multiunits. In fractions it is how many of a particular
unit divided into how many parts. Multidigit numbers present a good opportunity
for children to prepare for all of these new mathematical ideas by recognizing that
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these small numbers are "how many" numbers that tell how many of something
there is. Thus, they can begin the very useful practice of asking "how many
whats?" for any number they see in these new uses.

The dysfunctional nature of the take-away descriptions groups L1 and 1.2 used
to describe trading, with this language supporting and perhaps even suggesting the
erroncous nines procedure, indicates that it would be helpful if teachers monitor
the langnage used to describe trading. For this take-away description, and any
other procedural short-cut definitions that suggest wrong marks trading, teachers
need to ensure that children, instead, give a full description using multiunit words
and the numbers of these multiunits ("I'm trading ten of these pancakes for one
ice cube." or '"I’'m putting these ten hundreds here together to make one
thousand.").

These differing positive and negative effects of language indicate that future
research needs to examine the effects of the kinds of verbal descriptions children
produce. Resnick and Omanson (1987) reported that the amount a child
verbalized when using base-ten blocks was positively related to their correction of
written marks errors. In the present study some kinds of verbalization seem
instead to have had negative effects. Furthermore, even though questions by the
experimenter at the end of the addition phase indicated that most children could
produce good verbal descriptions, these highly verbal children did not
spontaneously produce large amounts of such descriptions. Therefore, both
teachers in the classroom and researchers studying multiunit learning need to
support children’s production of the positive kinds of language (full multiunit
descriptions of trading).

We are unable to make any strong conclusions about the efficacy of using the
regular Asian ten-structured words compared to the irregular English words
because children used relatively few full multiunit verbalizations (English irregular
or Asian regular). Children did learn the Asian words readily, and some children
seemed to like their regularity. Other occasions on which they seemed
advantageous have been discussed elsewhere. A preliminary report of a teaching
experiment in which Asian tens words are used in a first and third grade class is
in Fuson and Fraivillig (in press).

Time to build multiunit thinking

The four groups that spent eight days on addition all had agreed upon an
accurate blocks procedure that was understood and could be carried out by all
children. Each of these groups also had centered on some marks procedure that,
for some children, was linked closely to the blocks procedure and was conceptual,
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but that for other children in the group, was less closely linked and not yet fuily
conceptual. None of these four groups had enough time in the reverse
marks-to-blocks linked direction. They would have benefitted from two more days
doing fully linked blocks-to-marks procedures with full multiunit descriptions to
help the weakest group members, and two to four days doing faded reverse
marks-to-blocks links where children did marks procedures and described them in
block words and English words and used the blocks where necessary to clarify
problematic points. If blocks-to-marks links and full multiunit descriptions had
been supported earlier in the addition phase than occurred spontaneously in this
study, these children might have been where they were at the end of eight days
three or four days earlier. They also would have avoided adding the several
incorrect marks procedures they invented to their repertoire of solution
procedures, with those procedures needing to be suppressed by Q:Enbm about the
collectible multiunits in the blocks.

These results indicate that it takes a long time--days and even weeks--for
high-achieving second graders to construct multiunit quantities and ten/one trade
conceptual structures and use these structures in devising and being able to explain
and justify an accurate method to add multidigit marks. For children with weaker
backgrounds it might take two or three times longer for this construction, and
children might need even more support from the teacher or other expert to
maintain links and produce full verbalizations in order to enable the blocks to
function most effectively. In studies in which the standard algorithm was modelled
with blocks (Fuson, 1986; Fuson & Briars, 1990), the amount of time spent on
addition varied with the achievement level of the second-grade class from about
a week to three weeks. When children are inventing their own addition method,
the required time would seem to be greater, even with teacher support to curtail
the long unlinked incorrect marks sidetrips taken by some groups here. Therefore
the appearance in textbooks of base-ten blocks for three or four pages, as is
becoming typical now (they do appear but only for a short time: Fuson, in
press-b), is not nearly long enough even for the most able children. Of course, the
extent to which children need to move the blocks themselves as opposed to seeing
the collectible multiunits in pictures is also unknown at this time, so this may be
another limitation of the blocks in book pictures.

Some interventions with blocks (e.g., Resnick & Omanson,1987), and with other
physical materials used to support conceptual understanding (e.g., Byrnes & Wasik,
1991), consist of a single instructional session. When this single session fails to
lead to full conceptual understanding or to accurate written computation, that
physical material, or the whole approach of using physical materials to provide
quantitative referents for mathematical symbols and operations, is judged to be a
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failure (e.g., Byrnes & Wasik, 1991; Siegler, 1991). Instead, the real question
should be why anyone would think that a single session would be sufficient for all
but the brightest child to construct all of the necessary new conceptual structures
in the mathematical domain in question and clearly link the quantitative features
in the situation to the new operations on the mathematical marks. If a child
already had all of the requisite knowledge, a single session might be sufficient to
make new connections in this knowledge that would lead to an insight kind of new
learning. But in most cases, children must build the requisite knowledge as well
as make the connections. Such a single session is even more problematic when the
subjects are not novices for whom the target written procedure is a new discovery
but are instead children who have for months and even years carried out an
incorrect procedure (e.g., Resnick & Omanson, 1987; Byrnes & Wasik, 1991).

Finally, as we discussed above with respect to our children in their small groups,
children in such a single session will bring to this session their usual interpretation
of the goals and purposes of mathematical activities--learning correct written
procedures. Until these social norms can be renegotiated, and a new focus
established on conceptual understanding and explanation, use of materials is likely
to be assimilated into this expectation concerning mathematical activity. Children
then are likely to see the session as having two separate components--learning to
add with the blocks and learning to add with the marks--rather than trying to use
the perceptual support of the materials to understand the marks procedure.

Children also took a long time to work through a problem, averaging only one
to two problems per 35-minute working time. This is in contrast to the range of
7 to 12 three-digit subtraction problems worked in the single tutoring session in
Resnick and Omanson (1987). Our groups’ time was spent discussing various
group issues and some off-task topics as well as proposing and carrying out and
arguing about various block or mark solution procedures. But this group pace is
much more typical of the slower pace, relatively fewer problems solved per class,
and more discussion found in Japanese classrooms compared to classrooms in the
United States (Stigler, 1988). Blocks can be quite effective when they are used
over a longer period both in the standard algorithm studies (Fuson, 1986; Fuson
& Briars, 1990) and in the invention approach used here, but time is needed to
work through a single example and extended time over days and weeks is needed
to build and connect all of the new conceptual structures.

Supporting multiunit thinking

Children in all groups were capable of much higher levels of thinking than they
produced spontaneously. Group L2, with the support of the experimenter,
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profitably.compared the relative advantages of adding from the left and from the
right. All groups could have discussed this issue. Most groups had at least one
member who wanted to add the blocks from left to right, and several groups
carried out full left-to-right blocks procedures. The exploration of left-to-right
procedures was shortcut in several groups by assertions of a rule (e.g., in reading
we go from left to right and in math we go from right to left), so such an
exploration might be especially natural for children who have not yet learned such
rules.

We had hoped that all groups might construct at least one marks procedure that
differed from the standard algorithm many of them already knew. However some
groups, especially H1 and H2, were so focused on the standard algorithm that they
did not really do this. In such a case it would seem worthwhile to demonstrate
one or more nonstandard procedures described here or in Fuson, Burghardt, and
Fraivillig (1992) and ask the children to decide if they are correct or not and what
might be their relative advantages or disadvantages. Children also might pursue
extensions of their four-digit experience such as deciding what would be the size
of the next three multiunit blocks (blocks for the fifth, sixth, and seventh positions)
and how would they add two seven-digit numbers and why. Role-playing activities,
such as explaining an addition method to a new student who has just come into the
class or helping that student figure out a method for herself, might also be
interesting and help children try to articulate every step they were doing. Some
children in this study showed remarkable ability to scaffold other children’s
learning, and even first graders can do so. During the first year of the block work
reported in Fuson and Briars (1990), a new student came into the high-achieving
first-grade class just as the children were completing the block work (they had
been working in individual groups each helped by a fourth grader). The teacher
asked one of the strongest students to show this child how the blocks and marks
procedure worked, and in one day the new child added correctly and could explain
the marks addition in terms of the blocks.

If children are working in the same group for a prolonged period of time, it also
may be helpful from time to time to have each group make a report to the whole
class on their addition methods, discoveries, and current difficulties. The class
then might discuss these alternative approaches and discoveries and suggest
solutions to the difficulties. Having to make such a report may help to focus the
work of the group. If any group member can be chosen at random to make the
report, all group members may feel more need to support the understanding of all
members of their group. Having occasional outside input might help groups whose
socially dominant members have weaker conceptual understanding. These
comparative discussions would require children to understand the thinking of other
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groups and would seem likely to extend everyone’s thinking, Of course, as with

the groups here, such discussions may need to be supported by the teacher, at least
initially.

Generalizing to other achievement levels

How well these results extend to second-graders who are low- or
average-achieving in mathematics is an open question. We collected similar data
on a class of such children, but have not yet completed the data analysis. This
class, especially the low-achieving children, clearly needed more support from the
experimenters than did the children in this study. In the studies modelling the
standard algorithm (Fuson & Briars, 1990) even low-achieving second graders did
learn to add four-digit numbers and explain their trading using ten/one multiunit
concepts (they did this late in the year rather than at the beginning of the year, as
in this study); in the lower-achieving classrooms the teachers initially modelled the
blocks and marks procedures and the children participated in justifying what was
being done with the blocks. When classrooms or groups are more heterogeneous,
it seems likely that the higher-achieving children might do more of the initial
discovery of an addition method and then play the role of the teacher modelling
this method for the lower-achieving children. The quality of the explanations given
by the children in the present study, at least those elicited by the experimenters,
seems sufficient to facilitate the learning of their low-achieving peers.

Lower-achieving children may also have more trouble with the technical aspects
such as copying the problem, counting the blocks, and doing single-digit addition.
For the first two, It would be helpful if teachers emphasized that disagreements
can sometimes be resolved by checking that the problem was copied correctly or
checking that the number of blocks is correct or by starting the problem again with
carefully checked blocks. To keep the problem blocks accurate and eliminate the
frustrating digressions that occasionally occurred when blocks were played with or
merged with nonproblem blocks, horizontal block trays for each addend and for
the sum would be helpful. These would also provide perceptual support for the
horizontal multiunit number versus the vertical columns in the written marks; this
was a special problem in subtraction (Fuson & Burghardt, 1991). Finally, though
the children in this study did not need the blocks to find single-digit sums, some
lower-achieving children might need them at least initially for the larger sums.
Because the trading in addition requires a given multiunit sum to be in the form
of a ten and the left-over amount, and the block collectible multiunits digplay this
tenness, multiunit addition with blocks can help children learn the efficient
ten-structured up-over-ten method in which the second addend is split into a) the
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part that makes ten with the first addend and b) the left-over amount. For
example, 8 + 5 is done as 8 + 2 (to make ten) + 3 (the rest of 5) = ten plus

three. With the blocks 8 longs plus 2 of the 5 longs makes one flat plus 3 longs
" of the 5 original longs left. This is the addition method taught to Chinese,
Japanese, and Korean children (Fuson & Kwon, in pressa; in press-b; Fuson,
Stigler, & Bartsch, 1988), and it seems to be readily learned by these children
whose language supports these methods. Thus, work with base-ten blocks might
support this more advanced single-digit addition procedure.

Conclusions

The base-ten blocks present key quantitative features of multidigit English words
and marks. Empirical questions about these blocks are (a) whether and when and
how do children use these features of the blocks to carry out correct blocks
addition and (b) whether and when and how do children use these features of the
blocks and of blocks addition to carry out correct addition with multidigit marks.
Our results indicated that (a) was fairly straightforward. The blocks strongly
directed children toward correct block addition procedures. For (b), we found that
second graders could easily link the quantitative features of the blocks to the
marks and English words. Such linking did enable them to invent addition
methods for the written marks that were accurate, based on the quantitative
features; methods twhich the children were explain and justify. Such linking also
enabled them to self-correct incorrect marks addition procedures and justify these
corrections based on quantitative features.

However, we identified two crucial roles of an adult in accomplishing (b). First,
most children did not spontaneously make such links but instead worked within
separate blocks and marks worlds. In the separate marks world, they primarily
used concatenated single-digit meanings of the multidigit marks and made many
different kinds of errors. When an adult supported links between blocks and
marks over at least a class session, children did find it relatively easy to carry out
linked procedures. It was these linked procedures that enabled them to correct
incorrect marks procedures and carry out correct ones. Second, these
high-achieving children spontaneously produced relatively few explanations or even
full descriptions of blocks addition that could support the linking of the multiunit
quantities to the marks procedure. This lack of explanations was sometimes
detrimental to the mathematically less advanced children in a group. Again, when
an adult elicited such verbalizations, most children could give them.

The ease with which children functioned within the linked setting once the adult
had helped them create this setting, and the fact that many could give when asked
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adequate verbal descriptions and justifications, suggests that these inadequacies
may have at least partly stemmed from an inadequate communication of the goals
of the block activity as including describing and justifying steps in an addition
procedure. It may take some time for a teacher to define the goals of a
classroom as using physical materials and situations to enable children to carry out
marks activities that are comprehensible to and justifiable by them and to help
children learn how to use materials to approach mathematics in this way. The
power of the blocks to direct correct addition and constrain incorrect marks
addition indicates that this can be a powerful approach to meaningful mathematics
learning and will be well worth the extra class time and extra initial teacher
preparation it takes.

These results illuminate several views of children’s learning that have been or
are currently rather widespread. These might be summarized in the following
three different views or models of children’s learning: (a) the Monkey
See-Monkey Do imitation view of learning, (b) the Computer programmed view
of learning, and (c) the Instamatic Camera view of learning (especially with
pedagogical objects such as base-ten blocks). In a classroom using the Monkey
See-Monkey Do view of learning, an expert (usually the teacher) models a
mathematical activity or procedure, and children imitate that model. With the
Computer view of learning, children are programmed to carry out the
mathematical activity or procedure by being told the rule or procedure to carry
out. With the Instamatic Camera view of learning, children are briefly shown
pedagogical objects that present mathematical features; children are viewed as
cameras that can instantly picture these objects and use them internally to direct
their mathmatical thinking. Learning views (a) and (b) have dominated traditional
school mathematical instruction. Learning view (c) has directed some uses of
manipulative materials (pedagogical objects) for a long time; it recently appears
in some textbooks and has marred some instructional research. None of these
views of learning results in successful mathematics learning for most students,
though all of these views can be effective with some students (usually the most
advanced, who can construct conceptual understanding with little support). There
is considerable evidence that children do not imitate correctly (the Monkey See-
Monkey Do view is not effective), they do not stay told (the computer view is not
effective), and they do not stay shown--or showing does not even work initially (the
Instamatic Camera view does not work) (e.g., see Grouws, in press, for results
concerning the first two views, and Byrnes & Wasik, 1992, and Resnick &
Omanson, 1987, concerning inadequacies of the third view).

The view of children’s learning that accounts for much of the current evidence
(for example, concerning the many different computational errors children make)
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is that children are goal-directed active Meaning Makers and Rule Derivers.
Children in any mathematical classroom are individually constructing meanings for
mathematical symbols and deriving rules for mathematical procedures. They do
this within the particular mathematical situations presented in that classroom, and
their individual constructions are affected by the meanings and rules derived by the
other children and the teacher. A major reason that traditional mathematics
calculation instruction fails for so many children is that much of this calculation
(with multidigit numbers, decimal fractions, ordinary fractions) uses a meaning of
written marks as single digits. Multidigit numbers and decimal fractions are
concatenated single digits, and ordinary fractions are two single digits separated
by a bar. This meaning is sufficient for the rules in standard calculation
procedures. That it is sufficient is part of the power and simplicity of these
systems of written marks. But the single-digit meanings of these systems are
insufficient to constrain incorrect rules or direct correct ones because there are so
many differences between calculation with single digits and calculation in these
more complex systems.

Various mathematical pedagogical objects have been invented in order to
address this issue of helping children learn adequate meanings for various
mathematical systems. However, the research literature on their use has been
quite mixed concerning the success of various pedagogical objects. Many of the
failures, we believe, are due to two sources: (1) their use has been governed by
inappropriate or inadequate learning theories and (2) an inadequate understanding
of the mathematical system or procedure they are intended to support which
results in an inherently inadequate pedagogical object.

When the efficacy of particular pedagogical objects has been tested using one
of the three learning theories (a) through (c), children’s understanding does not
improve considerably, and they may not learn the targeted mathematical procedure
as well as children not using the pedagogical objects. These failures occur because
the teaching effort does not recognize children as active Meaning Makers and Rule
Derivers and thus it ignores where given children are at the beginning of the
teaching effort. Use of pedagogical objects has to begin where children are. Such
use has to recognize that these pedagogical objects will be viewed by a given child
with the conceptual structures that child has at that moment. For most children,
there will be some distance between the conceptual structures they possess for the
targeted domain at the beginning of teaching and the desired conceptual structures
that the pedagogical objects are designed to support. Our results here, and the
results of successful use of pedagogical objects (e.g., Wearne & Hiebert, 1989), all
indicate that the successful use of pedagogical objects requires a process of
interiorization of the features of and actions on the pedagogical objects. This
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process of interiorization is neither rapid nor veridical. It depends on the
conceptual structures the child already has, and it will for most children take days
and, for some children, weeks or even months. These conceptual structures, and
the amount of sensitively adapted conceptual support in the environment in the
form of adults and other children, determine for a given child, the rapidity of
interiorization and the nature of the interiorized conceptions. The brief group
summaries of addition given in this paper give some indication of individual
differences in this process of interiorization; more detailed analyses of individual
learning paths as affected by the conceptions of others in the group are given in
Burghardt (1992).

Successful uses of pedagogical objects also depend, as we have seen in the study
reported here, on children’s making constant close links between the pedagogical
objects and the mathematical symbols (here, multidigit marks). If these two
worlds remain separate, the meanings potentially supportable by the pedagogical
objects cannot and will not become linked to the mathematical symbols. Further,
our results indicate that children do not naturally link these two worlds. If
anything, strong social forces may continually seek to separate these worlds. Thus,
successful use of pedagogical objects may depend upon a teacher’s support of such
linking.

Unfortunately, other evidence indicates that teachers do not recognize the need
for this linking (Hart, 1987). Their typical pattern is to use the pedagogical objects
(base-ten blocks, in Hart, 1987) for some period alone, and then to move to marks
with little (one day) or no linking of the pedagogical objects to the marks. Our
results indicate that this is just the opposite of what children need. The children
had little difficulty in adding with the blocks. The blocks were successful
pedagogical objects in that their features did direct children to correct multiunit
addition and correct trading. But children did have considerable difficulty with
addition with marks if this addition was not connected to the blocks. Therefore,
children need much of the learning time spent on experiences in which the blocks
world and marks world are tightly connected in order for the marks to take on the
quantitative meanings supported by the blocks.

Furthermore, our results indicate that, after strong connections between the
worlds are made, children may need time working just in the marks world while
using interiorized blocks meanings for these marks. This can permit children to
reflect on and connect various marks procedures (e.g., group M2 connecting their
invented fixing method to the standard algorithm) and give them practice in using
these interiorized meanings to direct and correct marks operations. The results
of Fuson (1986) indicate that second graders of all achievement levels and even
high-achieving first graders do interiorize base-ten blocks, and most of them can
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use these interiorized blocks to self-correct errors that may arise over time in their
marks procedures. A few children who began making marks errors needed to use
the actual blocks to self-correct their errors, another indication of the individual
variation in the process of interiorization.

The combination of the (usually) slow process of interiorization and the need
for prolonged linking of the pedagogical objects with their verbal and written
symbols results in a prolonged and complex learning experience with different
phases. Initially there is a period of close linking of actions on the pedagogical
objects and actions on spoken or written mathematical symbols. Then there may
be a phase in which the marks are used without the objects but verbal descriptions
of pedagogical object actions are given to keep the meanings linked to the marks.
Finally, there may be a phase of use of the marks in a particular solution in which
the meanings are not explicitly accessed during the solution (e.g., 5286 and 2749
are added without accessing multiunit meanings). However, the goal of the use
of pedagogical objects is that the interiorized meanings are available at any time
for the solution of nonroutine problems or for the justification of a particular
solution.  Unfortunately, many oversimplistic interpretations of the use of
pedagogical objects assume the Instamatic Camera theory of learning with
pedagogical objects or have a simpler view than indicated in this study (e.g., Byrnes
and Wasik, 1991, in their reduction of pedagogical objects to their described
"simultaneous activation" view).

The second limitation of pedagogical objects is not in the learning theory
employed in their use, but rests in the pedagogical objects themselves. An
inadequate understanding of the mathematical domain can lead to the design of
pedagogical objects that have features that are irrelevant or even misleading with
respect to the targeted mathematical domain. For example, colored chips are
widely used as place-value activities. However, they present neither the
quantitative features of the English words and multidigit marks (red does not show
tenness, green does not show hundredness, etc.) nor the use of position to show
multiunit quantities as in the written marks (one needs to use chips all of one
color to do this, e.g., Bell, Fuson, & Lesh, 1976). Thus, these pedagogical objects
do not help children learn multiunit meanings, and they support incorrect
responses (Labinowicz, 1985). Many pedagogical objects are designed and
marketed without any accompanying analysis of the mathematical features of the
English words and written symbols that indicate how the pedagogical objects can
support the desired learning. Nor is there empirical research indicating what
conceptual structures children need to have already in order to use particular
pedagogical objects successfully, i.e., there is no sense of the zone of proximal
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- development for particular pedagogical objects (Vygotsky, 1962). Both of these

kinds of analyses are needed.

An inadequate mathematical analysis can also result in measures of conceptual
understanding that are not the mathematical prerequisites for learning a particular
mathematical operation. For example, Byrnes and Wasik (1991) used measures
of conceptual knowledge in the domain of fractions that were much too simple for
the targeted operations: addition and multiplication of fractions. Only the
conceptual measure of order was even close to the difficulty of these operations;
understanding order of fractions (i.e., is 1/3 > 1/5?) can inhibit the almost
universal incorrect addition procedure used by Byrnes and Wasik’s subjects (add

the numerators and add the denominators). However, there was no measure of

understanding of equivalence classes of fractions (e.g, 1/2 = 2/4 = 3/6 = 4/8 =
...) or of the ability to change one fraction into a targeted related member of the
equivalence class. These are the conceptual prerequisites for addition of fractions.
One can only add fractions that have the same fractional unit (e.g., eighths of a
whole unit) just as one can only add like multiunits in multidigit addition.
Therefore, one must change fractions that have different fractional units into those
with the same fractional units in order to add them. Byrnes and Wasik’s use of
pedagogical objects to support correct fraction addition also seemed (from the
brief description available) to be limited by an inadequate linking of actions on the
pedagogical objects (plastic wedges in which different fractional units were a
different color) to operations on the written fraction symbols (using a least
common denominator procedure).

In this paper we did not focus on the social aspects of learning. Many of our
group summaries did convey some of these social results, however, because these
aspects are inherently inseparable from the cognitive aspects whenever learning
occurs in a social setting. Ways in which the personalities, initial knowledge, and
knowledge-under-construction of individual children interacted with the
personalities, initial knowledge, and knowledge-under-construction of other group
members is described in Burghardt (1992). A recent theoretical discussion of
social/cultural aspects of the Meaning Maker theory of children’s learning is given
in Cobb, Yackel, and Wood (1992). That paper articulates very sensitively and
well these social/cultural aspects of a Meaning Maker theory of learning. But, in
our view, the paper confounds a "representational view of the mind" with the
theory of learning used by the person espousing such a view of the mind, especially
when the research used pedagogical objects. The paper therefore mislabels the
target of its analyses and loses effectiveness as a result. The real targets of the
arguments mounted against the "representational view of the mind" are the
Monkey See-Monkey Do, Computer, and Instamatic Camera theories of learning.
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The paper reads quite well if one simply substitutes these targets whenever the
“representational view of the mind" is mentioned. A major problem with the
mislabelling is that some representational view of the mind, i.e., some view of
children’s conceptual structures, is required by a constructivist Meaning Maker
theory of learning. Such a theory requires, more than any other, considerable
understanding of children’s conceptual structures in a given mathematical domain.
For researchers who have experience in watching children’s learning and are
keenly aware of the power of the conceptual structures possessed by a given child
to affect what that child sees and hears in a given learning situation, it is absurd
to imagine that most children could learn a complex mathematical procedure or
system of concepts in one session of use of pedagogical objects, no matter how
powerful (the Instamatic Camera view), or by simple imitation (the Monkey
See-Monkey Do) or by following rules (the Computer view). Their discussion of
these theories is insightful. However, it would have been very helpful if these
theories of learning had not been lumped together and mislabelled the
"representational view of the mind."

Ohlsson and Rees (1991) raise the question of whether one can learn "why" and
"how" at the same time. Their analysis of the function of conceptual understanding
in the learning of arithmetic procedures emphasizes using knowledge about "why"
to correct errors that arise in an already learned "how" procedure. In their
analysis, conceptual understanding can support the self-correction of errors by
constraining problem states so that errors can be detected and corrected. Our
study provided support for this position. When blocks were linked to marks, the
multiunits in the blocks led children to see the errors in their marks procedures.
However, our study also indicates that the "why" can precede and direct the "how":
Conceptual understanding has an equally important role in directing the
construction of imitially correct problem states (i.e., here, correct multiunit
addition).

Our results also emphasize the critical role of the teacher in the classroom in
ensuring that the pedagogical objects are linked to the written marks (i.e., that the
available conceptual understanding is related to the marks) and in directing
children’s attention to critical features of these objects to facilitate their use.
Conceptual understanding can enable children to construct correct arithmetic
procedures and to find and eliminate errors in incorrect procedures. However,
children must understand and accept this conceptual approach to mathematics
learning in order to carry it out, and they may need to be helped along the way in
seeing and using critical quantitative aspects of the domain. Likewise, researchers
and teachers using pedagogical objects need to use a theory of learning that is
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consistent with the focus of pedagogical objects on meaning (i.e., they need to use
a Meaning Maker and Rule Deriver theory of children’s learning).
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