18 Chinese-based regular and European
irregular systems of number words:
The disadvantages for English-
speaking children*

Karen C. Fuson and Youngshim Kwon

Chinese and some other Asian languages (¢.g. Burmese, Japanese, Korean and
Thai} have regular named-value systems of number words in which a number
word 1s said and then the value of that number word is named {five thousand
seven hundred two ten six). Many European languages have regular named-value
number-word systems for the values of 100 and 1000, but they are irregular in
different ways below 100 (see Table 18.1). These irregularities have serious
consequences which affect children’s numerical learning adversely in several
different ways. Sufficient research is available to describe these consequences for
English-speaking children (mostly in the USA), and therefore the focus in this
- chapter is on the English language. However, many of the consequences
-~ discussed here would seem to apply to the other irregular European number-
word systems, though some details might vary. This chapter will briefly review
- English-speaking children’s relative difficulties compared to Asian children in
i learning the number-word sequence, in adding and subitracting numbers with a sum
- between 10 and 18, in constructing adequate mental representations for multidigit
" numbers, and in adding and subtracting multidigit numbers accurarely andfor
. meaningfully. Making linguistic comparisons js complex because most such
comparisons also involve many non-linguistic cultural factors that might affect
- learning. This problem is reduced in this case because the linguistic effects are
. supported by data concerning different kinds of errors made or different sofution
~.procedures used in the regular and irregular languages, rather than a simpler
accelerated learning in one language that might be due to more general cultural

: :._.*Parts of this chapter were presenled at the Biennjal Meeting of the Society for Research in Child
Development, Kansus City, April 1989,
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Table 18.F Number words

French Spanish Ttalign German
1 un, une uno, unad ung, una eins
2 deux dos due zwei
3 trois tres tre drei
4 quatre cuatro quattro vier
5 cing cinco cinque finf
6 six seis sei sechs
7 sept siete sette sichen
8§ huit ocho oito acht
9 neuf neuve nove neun
10 dix diez diect zghn
i1 onze once undici elf
12 douze doce dodici zwilf
13 treize trece tredici dreizehn
14 gquatorze catorce quattordici vierzehn
15 guinze quince quindici flinfzehn
16 seize dieciseis sedici sechzehn
I7 dixsept diecisiete diciassette siebzehn
18 dixhuit diecioche diciotto achtzehn
19 dixneuf diecinueve diciannove neunzehn
20 vingt veinte vent ZWanzig
21 vingt et un veintiuno ventuno einundzwanzig
22 vingt-deux veintidos ventidue zwetundzwanzig
23 vingt-trois veintitrés ventitre dreiundzwanzig
24 vingt-quatre veinticuatro ventiquattro vierundzwanzig
25 vingt-cing veinticinco venticingue fiinfundzwanzig
26 vingt-six veintiséis ventisei sechsundzwanzig
27 vingi-sept veintisiete ventisette siebenundzwanzig -
28 vingt-huit veintiocho ventotto achtundzwanzig
29 vingt-neuf veintinueve ventonove neunundzwanzig -
30 irente treinta trenta drei-ssig
31 trente et un treinta y uno trentuno einunddreissig
39 ftrente neuf treinta y nueve trentnove neununddreissig
40 quarante cuarenta quaranta vierzig
50 cinguante cincuenta cinquanta fiinfzig
60 soixante sesenta sessanta sechzig
70 soixante-dix setenta settanta siebzig
80 quatre-vingt ochenta ottanta achtzig
90 quatre-vingt-dix noventa novanta neunzig
9% quatre-vingt-dix-neuf  noventa v nueve novantanove neunundneunzig -
100 cent cien cento hundert
101 c¢ent et un ciento uno centouno hunderteins
125 cent vingt cing ciento veinticinco centoventicinque hundertfiinfundzwit
4313 quatremilietrois- cuatromiltres- quattromille- viertausenddreibun
centstreize cientostrece trecentotredici dreizehn

Notes: The words for 4313 are one word in the first four languages; they are hyphenated here
for lack of space. The Chinese words are given in English to show their structure. Burmese,
Japanese, Korean, Thai, and Vietnamese number words have the same regular structure as the




- (wenty-three
- twenty-four
twenty-five
- twenty-six

- twenty-seven
. twenty-eight
- twenty-nine

severty
: e‘_ighty

;Hnety-nine
;0fie hundred

¢ hundred

dne:hundred one

r f_l_;ousand three
dred thirteen

English Chinese
one one
two two
three three
four four
five five
SIX Six
seven scven
eight eight
nine nine
ten ien
eleven ten one
twelve ten two
thirteen ten three
“fourteen ten four
fifteen ten five
“sixteen ten six
“seventeernt ten seven
“gighteen ten eight
nineteen ten nine
twenty two ten
_ tWenty-one two ien one
~ “fwenty-two two ten two

two ten three
two ten four
two ten five
two ten six
two ten seven
two ten eight
two ten nine
three ten
three ten one
three ten nine
four ten

five ten

six ten

seven ten
eight ten

nine ten

nine ten nine
one hundred

one hundred one
one hundred two

ten five

four thousand three
hundred ten three

Positional base-ten

one
two

three

four

five

six

seven
eight

nine

one zerp
one one
one two
one three
one four
one five
one six
one seven
one eight
One nine
two zero
two one
two two
two three
two four
two five
two six
two seven
two eight
two nine
three zero
three one
three nine
four zero
five zero
SiX zero
Seven zero
eight zero
nine zero
nine nine
ONe Zero zero
one zero one
one two fve

four three one three

_::Ch_ln.ese words, and Baha

b

sa (the Indone
ry schools in the Philippines) are
reW'IFI'EguIarities (Vietnamese also has

sian formal language) and Tagaiog (the language used in
like Chinese words except they have a teen word and a
a few tonal and consonant irregularities).



214 K. C. Fuson and Y. Kwon

Relative difficuliies in learning the English nwmber-word sequence

The English system of number words does not directly name the ten and one
values in two-digit numbers. Several features of English even make it difficult to
see this underlying tens and one structure and to see how the first nine numbers
are re-used to make the decade words:

I The existence of the arbitrary number words ‘eleven’ and ‘twelve’ that do not
indicate their composition as ‘ten and one’ and ‘ten and two’.

2 The irregular pronunciation of ‘three’ in ‘thirteen’ and “five” in ‘fifteen’ that
obfuscate the re-use of the words ‘three, four, . . ., eighi, nine’ with ‘teen’ to
make the ‘ten three’ to ‘ten nine’ words.

3 The tens/ones reversal only in the teen words so that the “four’ is said first in the
teen word (‘fourteen’ instead of ‘teenfour’ or ‘ten four’) butis said second in all
of the other decade words ("twenty four”).

4 The irregular pronunciation of the decade words ‘twenty’, ‘thirty’ and ‘fifty’
that mask for many children the relationship of the decade names to the first
nine number words.

5 The use of two different modifications of ‘ten’ (i.e. ‘teen’ and “ty’) neither of
which clearly says ‘ten’.

Table 18.1 indicates that other European languages have many of these

irregularities, and French, Italian and Spanish also have a reversal and change of

form in the middle of the teens (see Menninger, 1969, for more about European
number words).

These irregularities in the words between ten and one hundred require children
to memorize major parts of the English number-word sequence without seeing
patterns other than the one through nine repetition within the decades (Fuson et
al., 1982; Siegler and Robinson, 1982} and without seeing units of tens within this
sequence. Consequently, children make more errors and more kinds of errors in &
saying the English sequence than do their peers who are learning the Chinese
regular named-value sequence in which tens are explicitly named; errors in
English are made in many different places, whereas those in Chinese are °
concentrated af decade or hundred changes, indicating that Chinese children do
see the pattern in their number-word sequence (Agnoli and Zhu, 1989; Millerand -
Stigler, 1987). Chinese children say their regular words ‘ten’ through ‘ten five’
faster than English children say their trregufar ‘ten’ through ‘fifteen’ words ..
(Agnoli and Zhu, 1989). Other details of difficulties children have learning the -
English number-word sequence are given by Fuson (this volume). :

In general, and not surprisingly, the kinds of errors made in learning a number-
word sequence seem to depend upon the structure of the sequence. Deaf
preschoolers learning American Sign Language (ASL) from their deaf parents
may skip signs that are difficult for them to make with their fingers or may
confuse the production rules that generate the number words (Secada, 1985).
Italian-speaking children show particular difficulties with the reversal in the
upper teens (see Table 18.1); Agnoli and Zhu, 1989).
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Relative difficulties in adding and subtracting numbers with 2 sum
between 10 and 18: Construction by English-speaking children
of 2 unitery representation of numnber words

The lack of an obvious tens and ones structure in English number words between
ten and one hundred results in the construction by English-speaking children of a
unitary mental representation of pumber words in which each number word is a
single unit. This unitary representation goes through several developmental
levels of increasingly efficient and abstract solution procedures for addition and
subtraction situations {see Fuson, this volume, for a summary of these levels and
Fuson, 1988, for a more detailed discussion of these successive unitary
representations), With these unitary representations children do not group
objects into tens or count by tens; each aumber is composed of that number of
single units, whether the units are presented by objects or by number words.

This developmental sequence of US children’s addition and subtraction ‘
solution procedures is almost entirely a secret underground movement within
school classrooms. Children invent most of these procedures for themselves
without support from their textbooks or teachers. Textbooks merely move from
addition and subtraction problems where objects are given with the numbers to
problems given in numbers with no available objects (Fuson er al., 1088).
Through practice, children are supposed to remember all of the addition and
subtraction facts. Because most are unable to remember all of these facts, they
move through the above developmental sequence of solution procedures for facts
not yet memorized. However, they do so slowly, with a considerable number of
second-graders still not at the highest level (Carpenter and Moser, 1983, 1984;
Steinberg, 1984). The solution of subtraction problems with sums up to 18 js
particularly delayed. Many US textbook series do not even present the most
difficult single-digit addition and subtraction problems in the first grade (Fuson
et al., 1988).

Astan children learn single-digit sums and differences more rapidly than US
. children (e.g. Song and Ginsburg, 1987). All such sums and differences are
- presented in the first grade in China, Tapan, Korea and Taiwan (Fuson e/ af.,
© 1988; Fuson and Kwon, in press). Children in these countries are taught
- particular methods of adding and subtracting numbers with sums between 11
- and [8. These methods all depend on the clear tens and ones composition of these
' ‘ten one’ through ‘ten eight’. The up-over-ten method is taught for
~addition: one addend Is partitioned into the number that makes ten with the
- other addend and the left-over number. Eight plus five is thought of as ‘eight plus
- two from the five is ten plus the three left over from the five is ten three’. Some 18
- children also invent this over-ten method (e.g. Carpenter and Moser, 1983, 1984).
f_However, this method is more difficult in English because the ‘ten plus x” sums
(e.g. ten plus three is thirteen) have to be learned rather than being given
?.'_automatically by the counting sequence as “ten three’; many US first- and even
Second-graders do not know these sums and have to countup from ten to find out
“how many ‘ten plus two’ or “ten plus four’ is {e.g. Steinberg, 1984). US children

#
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also commonly lack another prerequisite for the over-tens method: there is much
less emphasis in the USA than in China or Japan concerning the namber that
malkes ten with a given number {e.g. for eight plus five, one needs to know that
eight plus two is ten) and thus many first-graders have to count to find out how
many to put with a given number to make ten.

Two different methods are taught for subtraction in Japan, Korea and
Taiwan. The ‘down-over-ten’ method is the reverse of the up-over-ten method:
the number being subtracted is split into the number that is over ten, and the rest
is then subtracted from ten (ten three — §: the 8 is split into 3 and 5 — because the
three taken from ‘ten three’ leaves ten — and the 5 is then subtracted from this
ten=15). The ‘subtract-all-from-ten” method essentially turns subtraction into an
additive procedure: the number being subtracted is taken from ten and the
resulting difference is added to the amount over ten {ten three —8: ten —8 =2 plus
the three in the ‘ten three’=35).

The use of a unitary representation that has no larger units of ten does not
mean that such users cannot learn to read and write two-digit numerals. These
written numerals are related to the patterns in the English number-word
sequence: the first digit suggests (but does not necessarily specifically name, as in
‘twen’) the decade name and the second digit tells the word said after the decade
name, except for the reversed irregular teen words. Ross (1986) found that all
second-graders sampled from a wide range of classrooms were able to count
collections of as many as 52 objects and could write the two-digit numeral that
told how many objects there were. However, more than half of the second-
graders and 15% of the fourth-graders showed no knowledge of tens and ones
even as labels for the two digits, indicating that they had only unitary
representations for these numbers. The teens reversal in English (and other
European languages) does create special problems for writing the numerals for
the words between ten and twenty. The words for the ones digits are said first but
written second: one says ‘fourteen’ but writes 14. Thus, many children write 41
for fourteen, following the pattern of the words {some children say that the 1 with
the 4 “teens’ it, i.e. makes it a teen word). This strategy of writing the ones word
wherever it is said works for all the words between twenty and one hundred: one
says ‘twenty four’ and writes 24. So the reversal in the English teen words is
particufarly troublesome. In Chinese, there is of course no problem with writing
any two-digit number or with linking the digits to tens and ones labels: one says
‘two ten four” and writes 24 and one says ‘ten four’ and writes 14,

Relative difficulties in learning adeguate representations for multidigit
numbers: Interference of the unitary representation when constructing the
necessary named-value and positional base-ten representations

The English and Chinese systems of number words are measure named-value
systems, and the system of written multidigit number marks used in most
countries is a positional base-ten system (see Fuson, in press, for a fuller
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discussion of the features of these systems and of the different mental
representations children construct for these systems, and see Table 18.1 for
positional base-ten number words that illustrate some of these features). The
numbers in both of these systems are composed of different kinds of multi~units —
larger and larger units — and not just of single-unit items as in the unitary number
representations. Measure named-value systems have the following features:

| Each named value (e.g. tens, hundreds, thousands) is a collection of units.

2 New larger values are made by regular ten-for-one trades.

3 Because each new value must be named, large numbers are limited by known
names.

4 The value is conserved if named value/digit pairs are out of order.

Zero is not needed.

6 Quantities of each value direct multidigit addition and subtraction by adding
or subtracting ke values.

7 Trading for too many ( +) and for not enough (—) in multidigit addition and
subtraction are directed by the values of the quantities.

8 Values can have ten or more of that value (e.g. the expression ‘fifteen tens’ is
meaningful).

wn

Positional base-ten systems have the following features:

I' Values are not named but are implicit in the position of a digit relative to the
ones position.

2 New larger values are made by regular ten-for-one trades.

3 Because these new larger values just take positions to the left, large numbers
are not Jimited — one can make as large a number as places one can write.

4 The valueis not conserved if digits are out of order (e.g. 14isdifferent from 41).

5 Zero is needed for missing values to keep digits in their correct relative

' positions.

. 6 The meaning of positions built up by ten-for-one trades (their values as
products of ten) directs multidigit addition and subtraction as adding or
subtracting like products of ten (i.e. like positions).

7 Trading for too many (+) and for not enough (—) in multidigit addition and

- subtraction are directed by the values of the positions.

. 8 Positions cannot have ten or more in that position.

-iIn order to understand these features of named-value English words and
. positional base-ten written number marks for targe multidigit numbers, children
must construct named-value and positional base-ten mental representations for
“the words and the marks, and relate these representations to each other and to the
“words and the marks.

: English-speaking children show considerable difficulty in constructing multi-
nit named-value and positional base-ten representations in contrast to children
hospeak regular named-value Asian languages. These languages evidently help
“children construct named-value and base-ten representations for two-digit
-umbers. Miura (1987) found that Japanesc-speaking first-graders living in the
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San Francisco area used the tens and units in base-ten blocks to make named-
value representations of five numbers between 11 and 42 considerably more than
did English-speaking first-graders. The latter instead made unitary
count/cardinal representations from single units: 28 little cubes instead of two
longs (each long is ten units long) and eight units. Similar results were reported
for Chinese, Japanese and Korean children compared with US children (Miura et
al., 1988) and even for Japanese first-graders before any work on tens compared
to US firsi-graders after instruction on tens {Miura and Okamoto, 1989). The
persistence of this unitary view of number even in US adults is indicated by the
difficulty adults had accessing a base-ten rather than a unitary meaning for a two-
digit number, even when it would have heiped them in a task (Heinrichs e al.,
1981). __

Because most English-speaking children find sums and differences to 18 using -
4 unitary representation (even the result of a memorized number fact is likely to
be in the form of a unitary representation), English-speaking children must shift
back and forth between a unitary representation and a multi-unit named-value or -
positional base-ten representation to add or subtract multidigit numbers
meaningfully. This representation shifting, and the difficulty English-speaking .
children initially have in thinking in tens and ones, is illustrated by the extra step
for multidigit addition that was invented by first-graders using base-ten blocks in |
Fuson (1986). At the beginning of the addition learning, some children would
find the sum of a given column, e.g. that seven plus five is twelve, but they would
not know how many tens and ones were in twelve because it had only a unitary
sequence or cardinal meaning for them (twelve as coming after eleven or as a pile -
of objects they would get if they counted out twelve things). These children would
write down the twelve as 12 using an available rote word-numeral association.
They would then look at the 12 and think of it as ‘one two’ or ‘one ten two ones’ in
order to find that twelve has one ten and two ones; then they would trade the 1 ten -
and record the 2 in the ones column. Many second-graders in Fuson and Briars .
(1990) used this extra step on some problems in the post-test. All of these children -
evidently found the support of the written two-digit marks helpful in shifting
from the unitary to the named-value representation that was required to decide =
what to trade” . :

It may be that working with four-digit numbers, as the children who invented i
this step did, facilitates this named-value view of two-digit marks. In contrast, i
Madell (1985) found that many 6-year-olds using base-ten blocks Lo invent.
procedures for adding two-digit numbers held to their unitary mental represen- -
tation rather than constructing a named-value representation for the blocks: to .
do 48— 14, they would trade a long for ten units in order to get eighteen unit
from which they could take fourteen units. They did not use the multi-uni
solution supportable by the blocks: think of the 14 as 1 long and 4 unit and tak
the 1 long from 4 longs (i.e. one ten from four tens) and the 4 units from the 8
units to get 3 longs and 4 units (1.e. 34). Even when English-speaking children ge
better at knowing the tens and ones in single-digit sums between eleven and
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eighteen and do not need the support of the written two-digit sum to decide the
tens and ones, in most cases they must still switch back and forth conceptually
between the unitary representation with which they find the sum of the single-
digit numbers in a column and the multi-unit representation that directs their
trading when they have too many in a given column.

Asian children speaking a Chinese-based language have linguistic support for
the muiti-unit representation and do not necessarily even need to shift
representations. Their regular named-value words give all sums over ten in a
linguistic multi-unit form: seven plus five is ‘ten two’. Even if this ‘ten two’ is
initially thought of with a unitary counting/sequence representation with which
the sum of seven and five was found, the words themselves suggest what to do
with these ‘too many’ ones, They suggest that the ten in ‘ten two’ be put with the
tens in the other multidigit number and that the ‘two’ ones be recorded in the
ones colamn, Furthermore, these words are likely to have quantitative ‘tens’ and
‘ones’ meaning (and not just be verbal tens and ones labels) because the over-ten
method taught in mainland China, Japan, Korea and Taiwan to first-graders for
adding sums to 18 supports this quantitative interpretation by using the value of
ten In the addition or subtraction procedure (this ten is built up by adding one
addend to part of the other addend).

Chinese-based languages clearly are better than English for dealing with
situations in which there are more than nine ones because the named-value of
ten suggests what to do with the extra ones (1.e. with the ten). When dealing with
sums Over ten in other columns — situations in which there are more than nine
tens, hundreds, thousands, etc. - there are two different approaches that might be
taken within a multi-unit named-value representation and within a positional
base-ten representation. Again the different language forms support different
thinking. A unitary representation within a named-value representation was
used by English-speaking children who had used base-ten blocks {(Fuson and

= Briars, 1999} in explaining tens sums that exceeded one hundred: “That’s § tens
- and 8 tens is sixteen tens and ten of those tens makes one hundred and six tens
*left, so trade the hundred to the hundreds place and write the 6 tens here. {t’s one
- hundred and six tens.” With this unitary representation of tens, ten of the tens
o must be traded for one hundred, i.e. a value trade must oceur. In contrast, many
. Korean children are not permitted te say such ‘illegal’ forms as “ten six ten’ {the
. Korean named-value equivalent to “sixteen tens’), but must say ‘one hundred six
' -ten’, keeping to a pure named-value representation. Such sums can be found by a
generalization of the over-ten method to the larger value: ‘8 ten plus 8 ten is one
hundred {putting 2 ten from the second 8 ten with the first 8 ten) and 6 ten (left
+.over from the original second 8 ten)”. Sums of a given value that exceed nine c¢an
also be found by using a base-ten positional representation that ignores (at least
momentarily) the value of given digits and says (using an English unitary two-
digit epresentation) ‘8 plus 8 is sixteen — that’s one six: one to be traded and six to
be recorded in this column’ or (using a Korean two-digit named-value
Iepresentation) ‘8 plus 8 is ten six: move the ten over to the next left column and
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record the six in this column’. Bach of these Korean named-value approaches
was used by some Korean second- and third-graders in explaining their
multidigit addition (Fuson and Kwon, under review).

Relative difficulties in adding and subtracting multidigit numbers accurately
and/or meaningfully

The lack of verbal support in the English language for multi-unit named-

value/base-ten representations of tens and ones makes it particularly important

that support for constructing such representations be provided in other ways to
| English-speaking children and other children with number words that do not
1 clearly state the underlying tens structure of the words and the base-ten written
: marks. Unfortunately, in the USA, such support is rarely given. Children are

taught multidigit addition and subtraction as step-by-step procedures of adding
and subtracting single-digit numbers and of writing digits in certain locations.
These experiences result in many US chiidren constructing a mental con-
catenated single-digit representation of multidigit numbers in which multidigit
numbers are viewed as composed of single-digit numbers placed next to each
other (M. Kamii, 1981, called this ‘glued together” digits). This representation is
inadequate in many ways and results in many errors in place-value tasks and in
multidigit addition and subtraction.

Children indicate use of the concatenated single-dligit representation in several
different place-value tasks. When shown, for example, the numeral 16 and
sixteen objects and asked successively to show the objects made by each part of
the numeral (the 6 and then the 1), many elementary school children indicate six |
objects for the 6 but indicate only one object for the 1 instead of the ten objects to -
which the 1 really refers (C. Kamii, 1985; M. Kamii, 1981). When asked to reada |
three-digit number and then write the number that is one more than the given .
number, half the third-graders increased by one the digit in one or more places
other than the ones place: giving for 342 the answers 1342, 453, 442, 452, 352
{Labinowicz, 1985). Children also sometimes seem to use a concatenated single- 3
digit représentation to decide which of two multidigit numbers is larger: half of
the third-graders sometimes ignored the position of digits and focused on a single ;
digit in one number as being larger than a single digit in another number, :
choosing 198 as being larger than 231 (Labinowicz, 1985). Ginsburg’s (1977} ;
Stage 1 for children’s understanding of written number — no verbalizable E
meaning for the digits — fits this concatenated single-digit representation: in the
example protocol, the child says about the 123 just written for the words ‘one -
hundred twenty three’ that the “1 is just 1, the 2 is just 2, and the 3 is just 3°. Ross ¢
(1986, 1988) found a level of place-value knowledge in which children seem to
possess quantitative meaning for the tens and ones (they relate object subgroup-
ings of tens and of ones to two-digit numbers) but in which they actually are just
relating digit values or digit positions to presented groupings without regard for :
the size of the group: they will say that the 6 in 26 refers to six groups of four and -
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the 2 refers to the two left-over objects if presented with this non-ten grouping of
26 objects. Bednarz and Janvier (1982) reported for many Canadian third- and
fourth-graders ‘digit by digit’ strategies that ignored the tens and hundreds
values of the digits.

Use of the concatenated single-digit representation may not be evident when
children are given multidigit addition or subtraction problems written correctly
vertically (with like relative positions aligned) if the sum of the addends in each
column does not exceed ten. Children add {or subtract) the digits in each column
and write each sum (or difference) in the space below the column. Inadequacies in
calculation performance appear if the problem is written horizontally, if the
columns are aligned incorrectly, if the multidi git numbers have different numbers
of digits, or if the sum in a column is ten or greater. If asked to add two multidigit
numbers written horizontally, children may not even keep the digits in each given
number together (Fuson and Briars, 1990) or they align the numbers on the left
{Ginsburg, 1977; Labinowicz, 1985; Tougher, 1981). Friend (1979, discussed in
Davis, 1984) identified several different kinds of errors Spanish-speaking
children make in addition and subtraction problems in which the numbers have
different numbers of digits (see Table 18.2). Further inadequacies of the
concatenated single-digit representation in directing multidigit addition and
subtraction are revealed when the sum in any given column exceeds mne;
examples of several kinds of errors made in such problems are given in Table
18.2. For some of these errors children at [east maintain the values of the single
digits: if they subtract from one di git they add the same amount to some other
digit. But in other errors, children do not even conserve the values of the single
digits that make up the multidigit numbers.

Many US children who carry out multidigit addition and subtraction correctly
do not understand multidigit numbers and do not have adequate meanings for
the multidigit procedures. M any third-graders who correctly add two-digit
numbers nevertheless identify the 1 written above the tens column as a ‘one’ and
not as ten ones or as one ten (Resnick, 1983; Resnick and Omanson, 1987), and in
a three-digit problem correctly added similarly identified the traded 1 as a one
- rather than as a hundred (for ten traded tens) despite probes such as ‘“What does
-~ this | stand for?” and “What do the 3 and the 2 [the hundreds digits] stand for?
- (Labinowicz, 1985). Only 24% of the second- and third-graders who subtracted
- correctly identified their trade from the hundreds place as borrowing a hundred
= {Cauley, 1988); the others said they had borrowed a ‘one’.

- Thus, there seem to be levels within the concatenated single-digit represen-
. lation, both with repect to place-value performance and multidigit addition and
i subtraction performance. With respect to place-value performance, children may
- initially not even be able to label the digits as ‘tens’ and ‘ones’. They then may
© begin to label digits reliably, but these digits are based on ordinal position (the
- name of the first column s ‘ones’, the name of the second column to the left is
lens’ the . . third . . s ‘hundreds’) and not on any quantitative meanings of
these names. Later, some children may select grouping referents for these digits,
- but these grouping referents are peneral aspects of any given grouping rather

.




Table 18.2 Multidigit addition and subtraction errors that reflect a

concatenated single-digit representation

Addition errors

Subtraction errors

Carry-to-the-leftmost®

Always-borrow-left®

My 6 8 24 645
15 6 10 9
4 1 4 I 6 6

Wrong-align-tong-algorithm®

8 7 b x5 519
39 i 9
1 6 30
2 7
Write-sum-for-each-column® Borrow-across-zero’
5 6 8 58,00
7 7 8 25
12 13 16 50 8 7
Vanish-the-one’ Stops-borrow-at-zero®
5 6 8 e 7iglo/2
7 7 8 3 2 5
2 3 6 6 7 8 7
Reuse-digit-if-uneven’ Top-smaller-write-zero?
6 3 2 5 2
2 1 1 8
g8 5 P4 0
Add-extra-digjt-into-column* Smaller-from-larger®
6 3 2 5 2
2 1 1 8
1 1 1 4 6
Ignore-extra-digits’ Reuse-digit-in-uneven?
6 3 7 8
2 6
5 P2

Borrow-unit-difference®

Note: The following are source notes: * Baroody (1987); b Ginsburg (1977); ¢ Fuson and Briars (in
press) and Fuson (1986); ¢ Friend (1979, in Davis, 1984); * Van Lehn (1986); ¥ Van Lehn {1986) and 3
Davis {1984); ¥ Fuson and Briars (in press) and Van Lehn (1986} & Davis et al. (1979, in Davis, 1984),
Fuson and Briars (in press), Fuson (1986), Labinowicz (1985) and Van Lehn (1986).
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than specific tens and hundreds groups. Within multidigit addition and
subtraction performance, the concatenated single-digit representation for some
children seems to serve as the basis for a spatial pattern analysis of multidigit
procedures (see Van Lehn, 1986) in which the quantitative values of the single
digits are not accessed, whereas for other children these values are accessed and
used to constrain the trading of units from digit to digit. However, because these
digits do not have tens or hundred values, these values do not constrain the
columns between which trading occurs and so the errors shown in Table 18.2
OCCUT,

Practical implications

Support for English-speaking children in constructing mental multi-unit named-
value and positional base-ten representations might be provided in at least three
ways. First, size embodiments such as base-ten blocks that perceptually display
the relative sizes of different named vafues and a positional base-ten embodiment
such as digit cards'(cards on which a single digil is written) can be used to help
children understand the features of the named-value and positional base-ten
. systems. Figures 18.1 and 18.2 illustrate the use of these embodiments in
~ multidigit addition and subtraction. Some children may need to use such
. embodiments for a fong time in order to construct the multi-unit mental
.. representations required for multidigit numbers. Bruring this time it is important
that the named-value blocks and number words be closely linked to the
positional base-ten digit cards and written marks problems so that the named-
value and positional base-ten meanings can be related to each other (see Fuson,
. in press, for a discussion of other features of the effective use of these
2 embodiments).
- Secondly, multidigit learning/teaching might begin with four-digit numbers
© because the regular named-value English words for hundreds and thousands
- suppoert the construction of a named-value representation and can provide a
. strong comntext into which the irregular tens can be pulled. This was done
:successiully for second-graders with base-ten blocks used as in Figs, 18.1 and
-18.2 (Fuson, 1986: Fuson and Briars, 1990), and anecdotal evidence indicates
that these larger numbers may have a similar effect for children using a mulii-unit
:Sequence representation in which they count on by tens and hundreds.
. A third alternative is having children learn a ‘Chinese’ version of English
j_ﬁumber words, that is named-value for tens, Thus, 8653 would be said ‘8
housand 6 hundred 5 ten 3" and 12 would be read as ‘ten two or ‘one ten two’.
:These ‘Chinese’ number words could be introduced in a cross-cultural context
and might help to focus English-speaking children on constructing a named-
value rather than just a unitary representation of two-digit numbers.
- Because so much multidigit school instruction occurs without sufficient
Perceptual or linguistic support of these kinds, it is no wonder that so much two-
digit place-value and addition and subtraction instruction goes awry in the USA
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(and possibly in many European countries): teachers talk about tens and ones
but children see the written two-digit marks as unitary sequence/counting
numbers that are counted collections of single objects {or words), or see these
marks as concatenated single digits, each with only a unitary meaning.

Conclusions

Asian languages that have a regular named-value system of number words that
name the ten values in a regular way as well as naming the hundred and thousand
values, help Asian children construct multi-unit mental representations for
multidigit numbers. These mental representations allow Asian children to add
and subtract numbers with sums between 10 and 18 and to add and subtract
multidigit numbers earlier, more easily and more accurately and render
multidigit addition and subtraction more meaningful. English-speaking children
construct and use for a long time unitary representations of number instead of
multi-unit representations and are much more likely to construct an inadequate
concatenated single-digit representation of multidigit numbers that allow them
to make errors in place-value tasks and in multidigit addition and subtraction,
Because of the lack of support for understanding tens and ones in English,
perceptual or linguistic support for constructing adeguate multi-unit represen-
tations needs to be provided in the classroom.
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