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Conceptual Structures for Multiunit 
Numbers: Implications for Learning 
and Teaching Multidigit Addition, 

Subtraction, and Place Value 

Karen C .  Fuson 

North western University 


Multiunit numbers are whole numbers composed of one or more kinds of 
multiunits (collections of single units) and possibly some single units. Mul- 
tiunit numbers are expressible by number words and by written number 
marks. This article identifies conceptual structures necessary for understand- 
ing the named-multiunit-value English system of number words, the un-
named-value positional system of written marks for multiunit numbers, and 
several different kinds of conceptual multiunits that give meaning to these 
two different systems. Conceptual components of multiunit addition and sub- 
traction are described. The special difficulties caused by irregularities in the 
English words for multiunit numbers composed of tens and ones are dis- 
cussed and compared with the much simpler learning task for children speak- 
ing a system of number words that names the tens and ones in a regular 
fashion (Asian systems based on Chinese). Literature concerning the poor 
performance of U.S. children on place-value tasks and on multidigit addition 
and subtraction is reviewed, and two special conceptual structures (sequence 
multiunit and concatenated single-digit structures) used by U.S. children are 
identified. The latter conceptual structure is associated with use of many dif- 
ferent partially correct procedural rules for multidigit addition and subtrac- 
tion that lead to characteristic errors made by U.S. children and that violate 
particular conceptual components of multiunit addition or subtraction. 
Classroom experiences that support children's construction of the requisite 
conceptual structures are discussed, with particular attention to the role of 
objects that display collectible multiunits. Limitations of current U.S. text- 
book treatments and curricular placement of place value and multidigit addi- 
tion and subtraction are described, and possible alternative paths to children's 
multiunit addition and subtraction are summarized. 

Requests for reprints should be sent to Karen C. Fuson, School of Education and Social 
Policy, Northwestern University, 2003 Sheridan Road, Evanston, IL 60208-2610. 
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Large whole numbers are expressed by systems of spoken number words or 
systems of written number marks that use multiunits to build up the large 
whole number. Different cultures have used different combinations of mul- 
tiunit~. Five, ten, and twenty have been multiunits used by many different 
cultures (see Bell, Fuson, & Lesh, 1976, chapter B7, for a more general anal- 
ysis of features of number-word and number-mark systems; for descriptions 
of many different systems, see Ifrah 1981/1985; Menninger, 1958/1969; 
Zaslavsky, 1973). Children in a given culture have to learn the multiunits 
used by their own system of number words and by their system of written 
marks, and they have to learn how these systems use these multiunits to ex- 
press large numbers. To learn how to add and subtract large numbers, they 
have to learn how the multiunits function in such addition and subtraction. 
This article focuses on the nature of these tasks for English-speaking chil- 
dren in the United States. Features of the English system of number words 
and of our system of written marks are identified, and difficulties in relating 
these two systems are discussed. Because understanding these systems re- 
quires understanding these features, each feature can be considered a con- 
ceptual structure that any given individual may or may not have. 

It is important for the reader to remember that the meanings the reader 
has for multiunit English words and for the standard multiunit written 
marks may not be shared by others, especially by young children. The 
meanings do not lie in the English words or in the written multidigit marks; 
they lie in children's minds and are constructed and linked to the words or 
the marks by individual mental activity in given individual situations. There 
are many different meanings that can be linked to the words and to the 
marks. This article analyzes these different meanings, identifying each dif- 
ferent kind of meaning as a different conceptual structure that can be 
linked to the words and/or to the marks. Meanings supported by the words 
or by the marks are identified. Conceptual understandings required for ad- 
dition and subtraction of multiunit addition and subtraction are discussed. 

The analysis of the English system of number words and the teaching 
and learning of this system are complicated by various irregularities in En- 
glish words between ten and one hundred. These irregularities can obfus- 
cate the underlying features of the system and the relationships between the 
system of words and the system of written marks. To clarify the analysis, 
the first part of this article considers a system of number words that is 
structurally like English but does not have the English irregularities-
namely, the Chinese system. Because most readers already possess the ap- 
propriate conceptual structures for English words and written marks, it 
may be difficult to separate these and understand what children must learn. 
Therefore, this discussion will sometimes use Chinese word examples to 
permit the reader to see the child's task in constructing the necessary con- 
ceptual structures. 

This article focuses next on the irregularities in English and on the many 
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difficulties these irregularities cause English-speaking children. Finally, im- 
plications of the conceptual analysis and of these irregularities for learning 
and teaching multidigit addition, subtraction, and place value are dis-
cussed. The conceptual structures required in these domains are complex, 
especially given the special difficulties caused by the English irregularities. 
These complexities place considerable demands on the kinds of learning 
opportunities that need to be provided to children within mathematics 
classrooms. 

This effort is undertaken because present instructional methods in the 
United States result in unacceptably low levels of competence with place- 
value and multidigit addition and subtraction. With respect to place value, 
less than 50% of third graders in the National Assessment of Educational 
Progress (NAEP) could do items identifying the hundreds digit, and only 
65% identified the tens digit correctly (Kouba et al., 1988). Many children 
in a heterogeneous sample from 33 second- through fifth-grade classrooms 
showed wrong or inadequate understanding of place value for two-digit 
numbers, with more than half of the fifth graders failing to demonstrate 
understanding of the ten-for-one trading that underlies the standard addi- 
tion algorithm (Ross, 1986). Less than half of the third graders interviewed 
identified tens and hundreds in three-digit numbers (Labinowicz, 1985). 
Other inadequacies in place value are detailed in Ginsburg (1977), C. Kamii 
(1985, 1986), M. Kamii (1981), and Labinowicz (1985). Performance on 
multidigit addition and subtraction is likewise very inadequate. A third of 
third graders in the NAEP survey gave incorrect answers on a two-digit sub- 
traction problem requiring trading, and half did so for three-digit problems 
(Kouba et al., 1988). Half of the middle-class third graders interviewed by 
Labinowicz (1985) solved a two-digit subtraction problem requiring trading 
incorrectly, and most of them were confident about their incorrect proce- 
dure. Davis and McKnight (1980) interviewed third and fourth graders from 
several schools with above-average students and teaching and found not a 
single child who solved 7002 - 25 correctly. Many different kinds of errors 
have been documented, especially for multidigit subtraction (e.g., Ashlock, 
1982; Brown & VanLehn, 1982; VanLehn, 1986). Furthermore, many or 
most children who carry out multidigit addition and subtraction correctly 
do so only as a rote procedure. They do not understand crucial features of 
this procedure and cannot explain them or relate them to features of the 
English number words or the written marks (Cauley, 1988; Cobb & Wheat-
ley, 1988; Davis & McKnight, 1980; Ginsburg, 1977; Labinowicz, 1985; 
Resnick, 1982, 1983; Resnick & Omanson, 1987; Silvern, 1989). 

These results are not due to inevitable age limitations on children's abil- 
ity to understand these concepts and procedures. On items measuring place 
value and multidigit addition and subtraction, Japanese and Taiwanese first 
and fifth graders showed much higher scores than did U.S. first and fifth 
graders on curriculum-fair tests (Stigler, Lee, & Stevenson, 1990). Korean 
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children ages 6 ,  7, and 8 carried out multidigit addition and subtraction 
much more accurately than their U.S. counterparts (Song & Ginsburg, 
1987), and Korean second and third graders showed better understanding 
of multidigit addition and subtraction than did U.S. children (Fuson & 
Kwon, 1990b). Korean, Japanese, and Chinese children showed better un- 
derstanding of place value than did U.S. children (Miura, Kim, Chang, & 
Okamoto, 1988). Mainland China, Japan, the Soviet Union, and Taiwan all 
begin place-value and multidigit addition and subtraction topics earlier 
than does the United States, and they complete this instruction earlier (Fu- 
son, Stigler, & Bartsch, 1988). Clearly, considerable improvement needs to 
occur in the United States in the teaching and learning of these topic areas. 
The goal of this article is to provide mathematical, cognitive, and instruc- 
tional analyses to facilitate efforts at such improvement. 

NAMED-VALUE MULTIUNIT WORDS AND UNNAMED 
POSITION-VALUE MULTIUNIT WRITEN MARKS 

In a named-value system of number words, the multiunits are explicitly 
stated. A number word tells how many of a given multiunit there are, and 
that number word is followed by the multiunit value word. An example of 
an English version of the regular named-value Chinese system is two ten 
thousand nine thousand five hundred eight ten three (or, to use the Chinese 
value words, two wan nine qian five bai eight shi three). In the unnamed 
position-value multiunit system of written marks now used in most of the 
world, the multiunit values are not indicated by any written marks. They in- 
stead are understood and implicit; the only marks written are those for the 
numbers that tell how many of each multiunit there are. These named-value 
or unnamed position-value features are not inherent in words or in marks. 
One can have a system of named-value written marks and a system of un- 
named position-value words (see Table I). 

The system of Chinese named-value words and the system of unnamed 
position marks have two attributes in common. First, they use the same 
multiunits-successive multiples of ten-to make larger numbers. The mul- 
tiunits can be thought of in several different ways: as collections of single 

TABLE 1 
Named-Value and Unnamed Position-Value Words and Written Marks 

Numbers Unnamed 
Expressed As Named- Value System Position- Value System 

Spoken words ?iuo ten-thousand nine thousand five hundred Tko nine five eight three 
eight ten three 

or two wan nine qian five bai eight shi three 
Written marks Z T T h 9 T h Z H 8 T 3  2 9 5 8 3  
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units, as generated by a ten-for-one trade from the next smaller multiunit, 
as values of cumulative ten-for-one trades, as cumulative multiples of ten, 
and as exponential word or mark expressions of the multiples of ten (see 
the multiunit structures in Table 2). These different conceptions of the mul- 
tiunits range from simple multiunit quantities to abstract expressions of re- 
peated multiples. To understand either the words or the marks, one must 
understand at least one of these notions of multiunits. Second, both sys- 
tems use nine different words/marks for the first nine numbers and reuse 
these words/marks with the multiunits based on ten to tell how many mul- 
tiunits there are. Therefore, to relate these systems to each other, one must 
learn associations between the first nine words (one, two, three, . . . , nine) 
and the first nine marks (1, 2, 3, . . . , 9). 

These systems also differ in fundamental ways (see Table 2). The system 
of written marks requires (a) the perception of a visual layout of horizontal 
"slots" or positions into which the nine number marks, 1 through 9, can be 
written to show the number of each kind of multiunit and (b) learning that 
these positions are ordered in increasing value from the rightmost position. 
The system of words requires (a) learning the value words shi, bai, qian, 
and wan, (b)learning that these value words are said in order of decreasing 
value from wan to shi, and (c) learning that each number word one through 
nine (except the number word that tells how many ones there are) is fol- 
lowed by a multiunit value word. 

Being able to move between the words and the marks requires two sets of 
associations: the association between the nine small-number words and the 
nine small-number marks (as mentioned earlier) and the association of 
multiunit value words to particular positions relative to the rightmost posi- 
tion (see Table 2). This latter association involves the conceptual structure 
listed in the second column of Table 2: being able to find a particular posi- 
tion from the rightmost position. This requires being able to start on the 
right and then counting or subitizing (recognizing visually) or naming 
places by moving to the left. Thus, one might count "one, two, three, four" 
and know the fourth place is the qian place, or subitize the fourth place and 
know it is the qian place, or say the value list in increasing value order "yi, 
shi, bai, qian" pointing from right to left to find the qian place. In all cases 
children must move from right to left, the direction opposite to that used in 
reading and commonly used in counting objects. One must also say the 
value list in increasing value order, the opposite to the value order in saying 
a multiunit English word. To say in words a multiunit number written in 
marks, one must go through one of the right-to-left processes to ascertain 
what value name to give to the first (leftmost) written digit. Once one 
knows this value name, one moves from left to right in saying the rest of the 
multiunit word from the written marks and uses the word order of decreas- 
ing values. One also moves from left to right when writing multiunit marks 
from the word, ignoring the value words and using the association between 



TABLE 2 
Conceptual Structures for Multiunit Numbers 

Name of the Conceptual Structure Nature of the Conceptual Structure 

Features of the marks 
Visual layout 
Positions ordered in increasing 

value from the right 
Features of the words 

Multiunit names 
Words ordered in decreasing 

value as they are said 
Multiunit structures 

Multiunit quantities 

Fifth 

Wan 
Ten-thousand 

Fourth 

Qian 
Thousand 

Third 

Bai 
Hundred 

Second 

Shi 
Ten 

First 

Yi 
Ones 

Regular ten-for-one and 
one-for-ten trades 

Ten thousands Ten hundreds Ten tens Ten ones 
o n e u e n  o n e v e n  o n e w t e n  one-

Positions/values as 
cumulative trades 

Positions/values as 
cumulative multiples of ten 

Positions/values as 
exponential words 
for multiples of ten 

Positions/values as 
exponential marks 
for multiples of ten 

Four trades 

Four multiples 
of ten 
( t x t x t x t )  

Ten to the fourth 
power 

1W 

Three trades 

Three multiples 
of ten 
(t X t X t) 

Ten to the third 
power 

103 

Ttvo trades 

n o  multiples 
of ten 
(t X t) 

Ten to the second 
power 

102 

One trade 

One multiple 
of ten 
(t) 

Ten to the first 
power 

10' 

No trades 

No multiples 
of ten 

Ten to the zero 
power 

1 8  
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the small-number words and the small-number marks. For young children, 
many of whom are prone to reversal problems, it may be quite problematic 
to sort out these directional complications and decide between moving 
from left to right and from right to left and between saying words in in- 
creasing order and in decreasing order. 

Once these two sets of associations have been learned, there are still 
three problem areas that involve additional distinctions and additional 
learning. First, if a value word is missing from a given multiunit number 
(e.g., four qian two bai yi), writing the digits in order (4 2 1) does not give 
the correct written marks. Some indication must be given for the missing 
shi value, or the larger values (qian and bail end up written in the wrong 
places (in the third and second instead of in the fourth and third places). 
Any mark could be used to show the missing value; the mark that is used is 
0. This word-mark association would be easier to learn if missing values 
were stated with a word counterpart to 0 (e.g., "no shi" or "zero shi"); in- 
stead children must learn the consequences of omitting a written mark if a 
value is missing (i.e., the larger values will be in the wrong place) and so 
must learn to write a zero for the missing value. Second, if there are more 
than nine of a given value, one has the reverse problem: Larger values get 
pushed one place too far to the left. This problem arises in multiunit addi- 
tion when the sum of the multiunits of a given value may exceed nine. 
Thus, children may add 38 + 24 and get 512 (especially if the 24 is written 
below the 38) and may even call that answer "fifty twelve" (as some U.S. 
second graders did in Behr, 1976). Words such as fifty twelve are well de- 
fined, even though unusual; the problem in written marks is that using 
more than one position for the ones (i.e., using two positions to write 12 
for the twelve ones) pushes the digit for the tens from the tens to the third 
(hundreds) place. Thus, one cannot write more than nine of a given value, 
even though one can say more than nine of a given value. This constraint 
comes from the written marks and not from the words. Third, multiunit 
numbers are made with words by concatenating the small-numberhalue 
pairs, but the effect of leaving out the value marks in the standard written 
marks is that written multiunit numbers are embedded rather than concate- 
nated. Writing the marks by concatenating rather than embedding the 
marks is a frequent and widespread error. In this error, the written marks 
for a given value word (e.g., 100 for bai and 10 for shr] are concatenated 
just as the words are concatenated: "two bai four shi six" becomes 200406 
or "five shi eight" becomes 508. This type of error is frequently made by 
U.S. children (Behr, 1976; Bell & Burns, 1981) and by Dioula African chil- 
dren speaking a named-value system of words (Ginsburg, Posner, & Rus-
sell, 1981), and it was made by European adults when our written marks 
were beginning to replace concatenated Roman numerals (Menninger, 
1958/1969). Such errors might occur less frequently if named-value systems 
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used a zero word rather than not saying zero values because 100 would not 
be just "one bai" but rather "one bai no shi no yi." 

One could learn to make the associations between the written marks and 
the spoken words using only the knowledge discussed so far. This would al- 
low one to say words for any written marks and write any spoken number 
words. To have any numerical understanding of the words or marks, how- 
ever, the words and marks must have multiunit quantities associated with 
the multiunit names and the multiunit positions. The "multiunit-quanti- 
ties" conceptual structure shown in the fifth row of Table 2 must be con- 
structed, and these multiunit quantities have to be associated with the 
conceptual structures for the marks and words. This construction requires 
experiences with situations that present multiunit collections of single units. 
Three examples that present the first four named values in visually percep- 
tual ways are: 

1 .  	Bundled sticks: single sticks, bundles of ten sticks, bundles of one 
hundred sticks, bundles of one thousand sticks. 

2. 	 Base-ten blocks: single small cubes; longs, one cube x one cube x ten 
cubes; flats, ten cubes x ten cubes x one cube; big, ten x ten x ten 
cubes (these are shown in Table 2). 

3. 	String lengths: one-cm strings, ten-cm strings, one-m strings, ten-m 
strings. 

For objects from any of these embodiments to be considered as a multiunit 
(e.g., the long ten-unit block), the viewer must focus on the cardinality of 
the units in a given bundle/block/string (e.g., must see that there are ten 
small cubes in the long block) and must conceptually collect or unite those 
separate units into a single multiunit (e.g., must see the ten ones as one 
ten). To emphasize this conceptual collecting activity, a conceptual quantity 
so formed is called a collected multiunit. The physical collections of objects 
from which a viewer can construct a conceptual collected multiunit are 
called a physical collectible' multiunit to emphasize the fact that such a 
physical item is only potentially, and not necessarily, a multiunit in the 
mind of a particular viewer (or at a given particular moment). 

The "regular ten-for-one and one-for-ten trades" conceptual structures 
(the second multiunit structures in Table 2) can be used in any situation in 
which one has too many or not enough of a given multiunit. These concep- 
tual structures guide the trades that can be made without changing the 
quantity of the overall multiunit number. The ten-for-one trades can arise 
from the multiunit-quantities conceptual structure by looking at contiguous 

'The word collectible is taken from Cobb and Wheatley's (1988) term abstract collectible 
units, which they used to refer to the conceptual multiunit a child constructed from a physical 
collection of single units. 
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multiunits and noticing that ten of one always makes one of the next larger 
multiunit. They can also be learned as a rote feature of the multiunit names 
(ten tens make a hundred, ten hundreds make a thousand) or of the visual 
layout of written marks (one can trade ten in any position for one in the 
position to the left). The regular ten-for-one and one-for-ten trades concep- 
tual structures are required for addition and subtraction of any multiunit 
numbers that have one or more multiunits exceeding ten in the sum. 

The last four conceptual structures shown in Table 2 require increasing 
reflection on the whole multiunit structure (at least through several posi- 
tions) and movement from additive to multiplicative notions. Each of the 
four structures builds on the structure above it. The conceptual structures 
in the first six rows can be constructed in isolated bits focusing on any given 
position or named quantity. For example, one could remember that the 
name for the fourth position is qian without remembering that bai is the 
name for the third place. Or one could have experiences that lead one to see 
that ten bai equal one qian without having first had experiences that help 
one notice that ten shi equal one bai. In contrast, each of the last four con- 
ceptual structures in Table 2 requires reflection on the pattern in the whole 
conceptual structure immediately above it in the table. First, each value or 
position can be seen as the cumulative result of regular ten-for-one trades. 
Second, the act of trading can be seen as the act of creating a multiple, a 
single multiunit, out of smaller units, so values or positions can be seen as 
cumulative multiples of ten. Third and fourth, denoting the number of suc- 
cessive multiples of a given base number (here, multiples of ten) is exactly 
the function of spoken words and written marks for exponential 
expressions. 

The discussion of conceptual structures has thus far been limited to 
numbers with only four multiunits. The system of named-value multiunit 
words and the system of unnamed position-value written marks begin to 
have different structures after several multiunits (the number varies with the 
system of number words). One can continue to make larger and larger posi- 
tions to the left (i.e., larger multiunits for the written marks) by using regu- 
lar ten-for-one trades. Thus, the multiunit value of any given position to the 
left, no matter how large, can be ascertained by using the regular ten-for- 
one trades structure or one of the conceptual structures below it in Table 2. 
To get larger and larger multiunits in a named-value system of words, how- 
ever, one needs a new name for each new larger multiunit. To avoid the ne- 
cessity of memorizing a huge list of multiunit names, most systems of 
number words meet this problem by creating certain large multiunits within 
which a small list of multiunit names is reused. Thus, in English very large 
numbers are chunked into large multiunits of a thousand, and the smaller 
multiunits of hundred and ten are used within these thousand-unit chunks. 
Thus, the fourth through sixth positions have the names (one) thousand, 
ten thousand, and hundred thousand. In the United States these thousand- 
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unit chunks show a base-thousand structure like the base-ten structure 
present in the first four places (the trades between contiguous chunks are 
thousand-for-one trades), and each of the new thousand chunks has a new 
name: thousand, million (a thousand thousands, the word million actually 
taken from the Latin mille meaning "thousand"), billion (a thousand mil- 
lions), and trillion (a thousand billions). Each three multiunits are read as 
if they were in the three rightmost positions (e.g., three hundred forty 
seven), and then the base-thousand multiunit name is added (e.g., three 
hundred forty seven million or three hundred forty seven thousand). These 
base-thousand chunks are shown by separating them by commas 
(4,735,735). In Great Britain, million is taken as a new base. Words in the 
7th through 12th positions are read as if they were in the 1st through 6th 
positions, and then million is added as the large multiunit value name. A 
British billion is a million millions (loi2) rather than a thousand millions 
(lo9) as in the United States. In Chinese, five rather than four positions have 
new multiunit names before the names are reused. Wan is then a new over- 
arching multiunit, and the smaller multiunits are repeated: shi wan, bai 
wan, qian wan. Wan wan is then a new large multiunit yi that is used with 
the small multiunit names: shi yi (I@), bai yi (10l0),qian yi (lo"), wan yi 
(1012).2 

ADDITION AND SUBTRACTION OF MULTIUNIT 

NUMBERS 


The components of multiunit addition and subtraction are given in Table 3. 
Addition of two multiunit numbers requires addition of the like multiunits 
that make up each number. Addition of the same kind of multiunits is just 
like adding small numbers, except that the result is some number of that 
multiunit. For example, four hundred plus five hundred is nine hundred, 
just as four plus five is nine. TWO different kinds of multiunits cannot be 
added together like small numbers: Four hundred plus five ten is not nine 
hundred or nine ten, it is only four hundred five ten. The conceptual struc- 
tures in Table 2 give different amounts of support to this fundamental un- 
derstanding of the nature of multiunit addition as adding like multiunits. 
The visual layout and relative position structures give little such support. 
There is nothing in them to suggest that multiunits even exist and nothing 
to direct which of the small numbers should be added together. Many sec- 
ond graders who had not yet studied multiunit addition (except perhaps 
two-digit addition with no trades) demonstrated this lack of support by 
responding to a question like "Rewrite 4273 + 56 so that it easy to add but 

2Zhao yi is also used instead of wan yi. These Chinese large number words are courtesy of 
K. Miller and J. Zao (personal communication, March 18, 1990). 
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TABLE 3 

Components of Multiunit Addition and Subtraction 


Operation 	 Components 

Addition Add like multiunits. 
Carry out the addition of a given kind of multiunit: single-digit addition of the 

numbers of a given kind of multiunit. 
Recognize and solve the problem of having too many (2ten) of a given 

multiunit: 
1. 	Recognize this as a problem (two digits cannot be written for a mul- 

tiunit sum). 
2. 	Trade ten for one to the immediate left (and know trading conserves the 

quantity of the traded multiunit and of the whole multiunit number). 
Subtraction Subtract like multiunits. 

Recognize and solve the problem of having too few of a given multiunit (the 
number being subtracted has more of that multiunit than the number being 
subtracted from): 

1. 	Recognize this as a problem (and know the correct order of subtraction 
and that subtraction is not commutative). 

2. 	Trade one for ten to the immediate right (and know trading conserves 
the quantity of the traded multiunit and of the whole multiunit num- 
ber). 

Carry out the subtraction of a given kind of multiunit: single-digit subtraction 
of the numbers of a given kind of multiunit. 

gives the same answer" by writing vertically 427 + 356 or 42 + 73 + 56 
(Fuson & Briars, 1990). Multiunit names do give some sort of cue. If asked 
to add 3 bai 2 shi 7 and 3 bai 5 shi 6, a person might well hazard a sum of 6 
bai 7 shi 13, even if the meaning of bai or shi was not known. Their differ- 
ent names give them different identities, so it seems sensible to combine the 
things with the same name. Multiunit quantities give even more support to 
the strategy of adding like multiunits. Presented with an array of 3 flat 
(hundred) blocks 2 long (ten) blocks 7 unit blocks and 3 flat blocks 5 long 
blocks 6 unit blocks, it is clear that pushing them all together (i.e., adding 
them) makes 6 flat blocks 7 long blocks 13 unit blocks as a sum. None of 
the other conceptual structures in Table 2 gives such clear support for the 
combining of like multiunits as does the multiunit quantities structure. 
Physical collectible multiunits seem particularly to support understanding 
this aspect of multiunit addition. 

When the sum of a given kind of multiunit exceeds nine, that multiunit 
cannot be written with the standard multiunit marks, because doing so 
would push marks for larger multiunits one position too far to the left. 
Thus, in the previous example, writing the sum of 6 flat blocks 7 long 
blocks 13 unit blocks as 6713 puts the 67 in the third and fourth positions 
instead of in the second and third positions where those multiunits belong. 
Either the multiunit quantities or the regular ten-for-one trade suggests the 
solution to this difficulty of having too many of a particular multiunit: 
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Trade ten of that multiunit for one of the next larger multiunit. This will 
give one more of the next larger multiunit in the sum and leave only the ex- 
cess over ten of the original "too-many" kind of multiunit. In this case, 
6713 trades into 683: 7 + 1 traded = 8, and the 3 is left from the 13. This re- 
quirement for trading when you have too many (i.e., 2 ten) of a given mul- 
tiunit arises from the written marks, not from named value words. 
Neglecting to trade creates written marks that are incorrect, whereas ne- 
glecting to trade with words creates nonstandard but comprehensible word 
forms (e.g., thirteen hundred or thirteen tens in English or shi three bai in 
Chinese). Whenever one must trade a given multiunit, the sum for that 
multiunit will be smaller than either of the addends. This is counterintuitive 
(addition usually makes larger) unless one understands that the sum is actu- 
ally larger than either addend but ten of that sum is written with the next 
larger multiunit; thus, the sum for that multiunit appears to be smaller than 
either addend if one just looks at the written-marks problem. The sum is 
smaller than either addend for a traded multiunit because, if one thinks of 
adding the smaller addend to the larger and breaks it into a part that will 
make ten with the larger number, the sum actually written for that mul- 
tiunit will be the rest of that smaller addend, which must be smaller than 
the whole smaller addend and thus also smaller than the larger addend. 

Subtraction of multiunit numbers has the same three components as ad- 
dition: (a) One operates on (subtracts) like multiunits, (b) this subtraction 
can be carried out as single-digit subtraction of the numbers of each kind 
of multiunit, and (c) trading is required for problems where the sum of a 
multiunit is ten or more. With addition, one can carry out the addition of 
like multiunits and only confront component (c), the problem of trading, if 
the sum exceeds nine. For subtraction, if a trade is necessary, one cannot 
even begin the subtraction of like multiunits until one has traded. Addition 
and subtraction are inverse (opposite) operations, and each multidigit addi- 
tion problem is inversely related to two subtraction problems (those made 
by subtracting each addend from the sum). One will need to trade in a sub- 
traction problem for any multiunit that was traded in the related inverse ad- 
dition problem, because the number of that multiunit in the minuend (sum) 
will be less than the number of that multiunit in the subtrahend (addend 
being subtracted). Thus, trading in subtraction is just undoing the original 
trading that was required in addition, because one could not write the 
whole two-digit sum for that multiunit. Therefore, trading in subtraction is 
just one-for-ten trading to the right, the opposite of the ten-for-one trading 
to the left that occurs for addition. So if one makes a subtraction problem 
from the addition example discussed earlier, 683 - 327 requires the subtrac- 
tions 6 bai - 3 bai, 8 shi - 2 shi, and 3 - 7. There are not enough units in 
the minuend to carry out the subtraction of the units (3 - 7), because the 
sum of the units in the original addition problem exceeded nine 
(6 + 7 = 13), and ten of the 13 were traded to the shi position, leaving only 



CONCEPTUAL STRUCTURES FOR MULTIUNIT NUMBERS 355 

3 units. Now to subtract 7, one needs the original sum of the units, 13; so 
one needs to carry out the reverse trade of one shi for ten units, resulting in 
13 units. This reduces the number of shi to 7, leaving the problems 6 
bai - 3 bai, 7 shi - 2 shi, 13 - 7 for an answer of 3 bai 5 shi 6, or 356. 
Thus, the traded minuend (6 7 13) is just the sum before trading (6 7 13). 
Seeing this inverse relationship between trading in addition and trading in 
subtraction may be quite a late understanding, because it requires knowing 
trading in addition and in subtraction fairly well before the reflection on 
the relationship between these different kinds of trading can be carried out. 
Table 3 shows in parentheses the knowledge that can lead to subtraction 
trading before this inverse addition-subtraction relationship is understood. 
One needs to know the correct order of subtraction (in a vertical problem, 
that 3 on top and 8 on bottom is 3 - 8, which is 3 minus 8 or 3 take away 8) 
and that subtraction is not commutative (without this knowledge, one can 
solve this problem by commuting 3 - 8 to 8 - 3 and saying 5, an extremely 
common mistake to be discussed later). 

In summary, addition and subtraction of multiunit numbers require 
three components: (a) understanding that one operates on (adds or sub- 
tracts) like multiunits, (b) making a ten-for-one trade to the left when one 
has too many of a given multiunit in addition and making a one-for-ten 
trade to the right when one has too few of a given multiunit in subtraction, 
and (c) being able to carry out addition and subtraction of single-digit 
numbers to find the sum or difference of any given kind of multiunit. Ini- 
tially, the multiunit-names and multiunit-quantities conceptual structures 
may support the understanding of these three components for the first 
three or four values or positions separately (e.g., one sees that one must 
add hundreds to hundreds and that if one has too many, one can trade ten 
hundreds for one thousand). Noticing that the structure of multiunit addi- 
tion (or multiunit subtraction) is the same across several multiunits, that is, 
noticing the similar ten-for-one (or one-for-ten) trades and the similar addi- 
tion (or subtraction) of multiunits, is a more advanced understanding. This 
abstraction may be facilitated by written-marks problems and by the ten- 
for-one and one-for-ten trades conceptual structures more than by words 
and the multiunit-quantities conceptual structure, because in the former the 
multiunits look alike, whereas in the latter they sound and look different. 
Emphasizing the differences across multiunits is important initially in de- 
ciding what can be added (or subtracted), but later on the generalization of 
multiunit addition (and subtraction) to very large problems with many po- 
sitions may occur more readily by emphasizing the similarities across the 
multiunits (and thus looking at written-marks problems). Conversely, even 
raising the issue of how to add and subtract larger and larger numbers (i.e., 
those with more and more positions) may force (or enable) students to step 
back from a focus on separate individual multiunits and facilitate the con- 
struction of the regular ten-for-one and one-for-ten trades conceptual 
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structures and a general understanding of the three components underlying 
multiunit addition and subtraction. Finally, reflection on inverse multidigit 
addition and subtraction problems may enable students to understand these 
as inverse operations. 

THE SPECIAL DIFFICULTIES POSED BY THE 

IRREGULARITIES IN ENGLISH NUMBER WORDS 


There are several irregularities in the English number words for two-digit 
numbers that obfuscate the tens and ones structure of two-digit numbers. 
These irregularities include: 

1. The existence of the arbitrary number words eleven and twelve that 
do not indicate their composition as ten and one, and ten and two. 

2. The irregular pronunciation of 	three in thirteen and five in fifteen 
that interferes with the "digit-teen" pattern for number words be- 
tween thirteen and nineteen. 

3.  	A reversal in the teen words that makes them opposite to the order of 
saying all other decades (one says fourteen but twenty four) and of 
writing the digits (one says fourteen but writes one four: 14). 

4. 	Words for the one-ten decade that are different in structure from the 
words in the two-ten through nine-ten decades. 

5. 	The use of two different modifications of ten (-teen in the first dec- 
ade and -ty in successive decades), neither of which clearly says ten. 

6. 	An irregular pronunciation of the decade words twenty, thirty, and 
fiftY that interferes with seeing the words two, three, and so on being 
reused in the decades and, thus, masks for many children the rela- 
tionship of the decade names to the first nine number words (Fuson, 
Richards, & Briars, 1982). 

Difficulties in Learning the Number-Word Sequence and 
the Written Marks 

These irregularities make it more difficult for English-speaking children 
than for children speaking a regular named-value system without these ir- 
regularities to learn the sequence of counting words, to differentiate teen 
and decade words, to make links between words and two-digit written 
marks, and to see multiunits of ten within the sequence either in the teens 
or in the decades. The last and the first two irregularities result in many 
children memorizing the English number-word sequence without seeing 
patterns other than the x-ty one, x-ty two, . . . ,x-ty nine repetition within 
the decades; for most children there is a long period of months or even 
years during which they learn the teen words and then another one during 
which they learn the order of the decade words (Fuson et al., 1982; Siegler 
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& Robinson, 1982). During this extended learning period, children make 
more errors and more kinds of errors in saying the English sequence than 
do children learning the Chinese regular named-value sequence in which 
tens are explicitly named (Miller & Stigler, 1987). 

The reversal of the ten (teen) and unit words in the teen words makes the 
teen words and decade words sound very much alike (thirteen and thirty or 
eighteen and eighty). This becomes particularly problematic when children 
are learning the links between the English words and two-digit written 
marks, especially for children who may be able to process phonetically the 
beginning but not the end of a given word (Kirtley, Bryant, MacLean, & 
Bradley, 1989). Thus, some children experience considerable interference 
and frequently write, for example, 80 for eighteen and 18 for eighty (Behr, 
1976). This reversal in the order of the ones word and the tens word (teen) 
in the teens also leads children to considerable difficulty in writing two dig- 
its for the teens words, because they want to write them in the order in 
which they hear the words: fourteen as 41 or eighteen as 81. This tendency 
is reinforced by the fact that such writing in the order in which the words 
are said works for all decades other than the teens (e.g., eighty-one is writ- 
ten with the eight before the one: 81). 

This obfuscation of the underlying tens structure in English number 
words results in the construction by English-speaking children of unitary 
conceptual structures for numbers between ten and one hundred. In these 
conceptual structures, numbers consist of single units. Young preschool 
children have separate sequence, count, and cardinal meanings for number 
words. The sequence meaning of twenty is as the number coming just after 
nineteen and just before twenty-one. The count meaning or count reference 
of "twenty" is to the object to which the word twenty is attached when 
counting. The cardinal meaning is "twenty" as the cardinality (numerosity) 
of a pile of twenty entities. Between the ages of 2 and 8, children construct 
increasingly complex relationships among these three kinds of meanings 
(see Fuson, 1988, for a more detailed treatment of these separate meanings 
and of the increasing integration of these meanings). Almost all first and 
second graders have related count and cardinal meanings and, thus, can 
count a group of objects to tell how many there are and can count well into 
the decades, so they have unitary sequence, count, and cardinal meanings 
for numbers well toward one hundred (Bell & Burns, 1981; Fuson, 1988; 
Fuson et al., 1982; Gelman & Gallistel, 1978; Ginsburg & Russell, 1981; 
Resnick, 1983; Siegler & Robinson, 1982; Starkey & Gelman, 1982; Steffe, 
von Glasersfeld, Richards, & Cobb, 1983). 

Children having only these unitary structures can learn to read and write 
two-digit numbers (i.e., to link English words and written marks). They re- 
late the patterns in the written digits to the patterns in the English number- 
word sequence below one hundred. The first digit suggests the decade 
name, and the second tells the number following the decade word, except 
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for the irregular teen words as discussed earlier. Ross (1986) found that all 
second graders sampled from a wide range of classrooms were able to count 
collections of as many as 52 objects and could write the two-digit numeral 
that corresponded to the count, evidencing a link between the count or car- 
dinal unitary meaning of that pile of objects and the written marks. Chil- 
dren at her Level l interpretation of two-digit numbers, however, showed no 
knowledge of tens and ones even as labels for the digits. More than half of 
the second graders and 15% of the fourth graders were at this level, indica- 
ting that they had only unitary structures. C. Kamii (1985) discussed how 
first graders can generate written numbers to 99 by repeating the cyclical 
counting order of the counting words. 

Difficulties in Constructing Multiunits of Ten 

Named-value Asian words support the construction of multiunit concep- 
tual structures of tens and ones more than do English words. The named 
Asian ten makes it easier than in English to learn the name for the second 
marks position, because shi is used in every word above nine (i.e., it ap- 
pears in 90 different number words below one hundred). This omnipresent 
shi is a constant reminder of the presence of tens within numbers between 
ten and one hundred. In contrast, the English word ten is used only once in 
the English words for those same 90 numbers. Furthermore, named-ten 
Asian words make it easier to link the written marks to any word because 
the pattern is the same for all words between nine and one hundred. For 
one shi eight or six shi eight, one just writes the two number words said in 
the order in which they are said and ignores the word shi (18 or 68), and to 
say any two-digit written marks, one just says the first mark, says shi, and 
says the second mark. 

English words have all of the problems and special patterns already dis- 
cussed with respect to the teens and to confusions between teens and decade 
words. The English words have three further problems with respect to dec- 
ade words. First, the change in pronunciation from two, three, and five to 
twen-, thir-, and 3 .masks the pattern four-ty, six-ty, seven-ty, eight-ty, 
nine-ty that is partially present in the English decade words. As a conse- 
quence, many children memorize a list of decade words (twenty, thirty, 
forty, fifty, etc.) to learn to count to one hundred. They then may use this 
list to decide what mark to write for a given English word. Behr (1976) re- 
ported examples of second graders who count through such a decade word 
list on their fingers and then know that they write a 6 for sixty eight be-
cause sixty is said with their sixth finger. This 6-six correspondence is given 
directly in the Asian words (six shi eight); no mapping to a decade word list 
is required. Second, the unitary conceptual structure elicited by the English 
words leads many children to write 608 for sixty eight: They know 60 is 
sixty, and sixty-eight is sixty followed by eight (or 60 plus 8), so 60 followed 
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by 8 (or 60 and then 8) seems a sensible way to write sixty-eight. Finally, in 
named-ten regular Asian words, just counting to one hundred shows the in- 
crementing of tens as well as the incrementing of ones. The use of nine ten 
for the ten words before one hundred (nine ten, nine ten one, . . . ,nine ten 
nine) shows the composition of one hundred as ten tens (as nine tens and 
another ten), whereas the lack of named tens in English results instead in a 
unitary conception of one hundred. 

Children who speak regular named-value Asian languages based on Chi- 
nese construct conceptual multiunits of tens, demonstrating both multiunit 
names for ten (in their named-ten number words) and conceptual multiunit 
quantities of ten. English-speaking children find it much more difficult to 
construct conceptual multiunits of ten, and instead primarily construct uni- 
tary structures for two-digit numbers. Miura (1987) found that Japanese- 
speaking first graders living in the San Francisco area used the tens and 
units in base-ten blocks to show five written numerals between 11 and 42 
considerably more than did English-speaking first graders. The former 
showed 11 as one long and one little cube and 28 as two longs and eight 
little cubes; the latter made unitary count/cardinal collections of single 
units of eleven or twenty eight little cubes. Similar results were reported for 
Chinese, Japanese, and Korean children compared with U.S. children 
(Miura et al., 1988) and even for Japanese first graders before any work on 
tens compared with U.S. first graders after instruction on tens and ones 
(Miura & Okamoto, 1989). The failure of English-speaking children to 
show conceptual multiunits of ten is also reported by M. Kamii (1982), 
Richards and Carter (1982), and C. Kamii (1985, 1986). In the Kamii task, 
for example, children count out a pile of sixteen chips when shown the writ- 
ten marks, 16; when asked to show with the chips what this part (the 1 is 
circled) means, many children show only one chip rather than ten chips. For 
them the 1 is a mark that "teens" the 6 (children I have interviewed have 
said exactly this), but it does not mean one ten. The strength and persist- 
ence of this unitary view of number even in U.S. adults are indicated by the 
difficulty adults had focusing on just the tens digit in a two-digit number, 
even when doing so would have helped them in a task (Heinrichs, Yurko, & 
Hu, 1981). 

Difficulties in Using Multiunits of Ten in Single-Digit 
Addition and Subtraction 

This difference in English and Asian conceptual structures for numbers be- 
tween 10 and 20 leads to different methods of addition and subtraction of 
single-digit numbers with sums between 10 and 18. Children in the United 
States invent a whole developmental sequence of unitary conceptual struc- 
tures used to add and subtract single-digit numbers (see Fuson, in press-b, 
for a review), whereas Asian children learn addition and subtraction meth- 
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ods structured around ten. The use of the unitary conceptual structures be- 
comes highly automatized in U.S. first and second graders and interferes 
with their construction and use of multiunits of ten. The unitary solution 
procedures begin with adding two numbers by counting all: counting out 
objects for each number and then counting all the objects to find the sum. 
This is sufficient to carry out addition and subtraction up through two- 
digit combinations, first by counting objects and later by counting forward 
and backward by ones within the sequence (e.g., Baroody & Ginsburg, 
1986; Fuson, 1988; Steffe et al., 1983). Many first and second graders then 
go on to relate count/cardinal and sequence number-word meanings, so 
that the sequence words themselves become the objects that are counted, 
and the first addend becomes embedded within the sum, and its counting 
can be abbreviated (Baroody, 1987; Baroody & Ginsburg, 1986; Carpenter 
& Moser, 1983, 1984; Fuson, 1988; Fuson et al., 1982; Steffe & Cobb, 
1988; Steffe et al., 1983). Addition situations now can be solved by count- 
ing on-beginning the final sum count at one of the addends. Thus, 5 + 7 
would now be solved more efficiently by counting on 7 words past 5 (count-
ing on from first) or by counting on 5 words past 7 (counting on from 
larger) rather than counting all twelve words. Some method of keeping 
track of the number of counted on words has to be used in this unitary se- 
quence solution procedure. For example, 9 of 14 second graders interviewed 
early in the school year by Cobb and Wheatley (1988) counted on by ones, 
but several had difficulty in keeping track of the counting on of the second 
addend. 

Subtraction is initially carried out by U.S. children using a unitary 
count/cardinal structure. Children separate from: They count out 12 ob- 
jects, pull away 7 of these, and count the remaining objects (Carpenter & 
Moser, 1983, 1984). With the embedded unitary sequence-count-cardinal 
conceptual structure that comes later, children can count down from (count 
down 7 words from 12 to find out how many words are left), count down to 
(count down from 12 to 7 to find out how many words are in between), or 
count up to (count up from 7 to 12 to find out how many words are in be- 
tween) (e.g., Carpenter & Moser, 1983, 1984; Fuson, 1988; Resnick, 1983; 
Steffe & Cobb, 1988; Steffe et al., 1983). 

Children in the United States then go on to derived-fact addition and 
subtraction procedures in which a needed sum or difference is derived from 
a known sum or difference by relating the addends and the sums (e.g., 
Carpenter & Moser, 1983, 1984). These procedures involve chunking the 
addends and sums in different ways. "Doubles + 1" is a frequent derived- 
fact procedure: 7 + 6 is related to the well-known double 6 + 6 = 12 and is 
seen to be one more than 12 (6 + 7 = 13), because 7 is one more than 6. 
Only one of the several derived-fact procedures involves chunks of ten. This 
is the over-tens method in which one number is broken into the part that 
makes ten with the other number and the part that is over ten. The combi- 
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nation seven plus five is thought of as "seven plus three from the five is ten, 
plus the two left over from the five is ten plus two, which is twelve." 

Asian children learn addition and especially subtraction through 18 
much earlier than do children in the United States (Fuson et al., 1988; Song 
& Ginsburg, 1987; Stigler et al., 1990). The over-ten method for addition is 
taught in mainland China, Japan, Korea, and Taiwan to first graders. This 
method is easier in these countries than in English because the numbers 
over ten are said as ten and any leftover ones. The sum of seven plus five is 
ten two, so Asian children have only to find the part that is leftover after 
making the ten and then say ten left-over-part. In English the ten plus x 
sums have to be learned rather than being given in the counting sequence; 
many U.S. first and even second graders do not know these sums and count 
up from ten to find out how many are "ten plus two" or "ten plus five" 
(e.g., Steinberg, 1984). U.S. children also commonly lack another prerequi- 
site for the over-tens method: There is much less emphasis in the United 
States on number pairs that make ten; therefore, many first graders have to 
count to find out how many to put with a given number to make ten. In 
Korea, children also learn methods of folding and unfolding fingers that 
support this over-ten method, whereas U.S. children learn finger patterns 
that support the unitary structures and make it relatively difficult to add 
sums over ten on the fingers (Fuson & Kwon, in press). Korean children un- 
fold fingers to show the first number to be added, unfold successive fingers 
to show the second addend, and fold fingers down again if the sum is over 
ten.' So for 7 + 5 they would unfold 7 fingers, unfold the remaining 3 fin-
gers and fold 2 fingers to make the 5 more fingers; these fingers then clearly 
show both how many more to make ten (7 plus how many fingers to make 
all ten fingers unfolded) and show the answer in Korean number words: ten 
two (the ten fingers unfolded and the two fingers folded). Children in the 
United States do not have a culturally supported way to reuse fingers, so 
they have difficulties when the sum exceeds ten (e.g., Steinberg, 1984). 

Asian children are taught two different subtraction methods that are 
structured around ten (Fuson & Kwon, 1990a, 1990b). One is the reverse of 
the over-ten addition method. In this down-over-ten procedure, one splits 
the known addend into the part over ten in the sum and a leftover part, 
which is then subtracted from ten to give the unknown addend: For 12 - 5 
(ten two minus five), the 5 is split into two (the part over ten) and the left- 
over part, three; the three is then subtracted from ten to give seven. In the 
subtract-from-ten method, the known addend is subtracted from the ten 
part of the sum, and the difference is added to the part over ten to make the 
unknown addend: For 12 - 5 (ten two minus five), the five is subtracted 
from ten (ten - five, or five + how much is ten) to leave five, which is then 

'Some children begin with open fingers, fold them to show the addends, and then unfold 
fingers over ten. 



added to the two to make seven. This method essentially turns subtraction 
into addition. Both subtraction methods require knowing complements to 
ten (the number that will make ten with any given number) and are sup- 
ported by the Asian named ten: The ten is named and provides a partial 
sum around which the addition or subtraction can be oriented, and the part 
over ten is named and does not have to be counted to find the teen name as 
it does for many children in English. 

Difficulties in Adding and Subtracting Two-Digit Numbers 

When Asian children first face addition of two-digit numbers, the named 
ten in their number words supports all three major components of mul- 
tiunit addition: (a) knowing that one adds like multiunits, (b) trading when 
one has too many of a given multiunit, and (c) expressing single-digit sums 
as a ten and ones to facilitate trading. Reading the problem 38 + 45 as 
"three ten eight plus four ten five" suggests what one needs to do to add 
these numbers: One needs to add the tens together and add the units to- 
gether. This strategy would be suggested just by a multiunit-names concep- 
tual structure but is directed even more strongly by a multiunit-quantity 
conceptual structure of tens and ones, which Miura's research suggests 
many Asian-language children have. Trading when one has too many is also 
suggested because the sum itself contains a ten: In this example, 8 + 5 is ten 
three (shi three). This very name suggests what to do-put that ten with the 
other tens-giving eight tens altogether for a sum of eight ten three (83). 
The notion of trading is further supported by the method of adding sums 
over ten: The over-ten method actually partitions the units so that they 
form a ten and some ones during the addition procedure. So the "ten-ness" 
(the multiunit quantity of ten) is supported by the addition procedure and 
is not just limited to the name of the sum. 

With the named-ten words, adding multiunits of ten is just a straightfor- 
ward extension of adding single units. In the earlier example (38 + 45), the 
sum of the tens before the trade is easily seen to be three plus four is seven 
tens. When the sum exceeds ten tens, children have two options. They can 
operate within a multiunit-name or multiunit-quantity conceptual structure 
and use an analog of the over-ten method to find the sum of the tens. So, 
for example, for 82 + 65, a child might think "eight shi plus six shi is eight 
shi plus two of the shi from the six shi gives one bai and the rest of the six 
shi-the four shi-gives one bai four shi (one hundred four ten) so the sum 
would be one bai four shi seven. The other alternative is to do the tens sum 
ignoring the particular multiunit involved until the very end. This would 
give thinking such as "eight plus six is eight plus two from the six is shi plus 
the four leftover is shi four and shi four shi are one bai four shi. " It is also 
possible to carry out the addition of the tens numbers with no use of the 
fact that these numbers refer to multiunits of ten. This may be particularly 
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likely if one just looks at the written marks-which do not name or other- 
wise show the multiunit of ten but instead look just like the single units in 
the ones position-and does not think of the words for the marks. In this 
case, one would just use the over-ten method for the numbers written in the 
tens position; this would sound like the second example without the last 
nine words-The sum would just be shi four. The named ten in this sum, 
however, suggests what to do to avoid writing two digits in a single place. If 
one is thinking of the tens position as a units position, then the position to 
the left would be the tens position, so one would put the ten as one ten in 
the next position to the left. Thus, even this single-digit approach could 
yield the correct procedure. At present, it is not clear how much each of 
these alternatives is supported in schools or used by children in Asian coun- 
tries. In interviews with Korean second and third graders after the second 
graders had learned two-digit sums with trades from the ones to the tens 
but had not learned to trade from the tens to the hundreds, some second 
graders discussed the sums using the beginning and the end of the first and 
third methods to explain addition in three-digit problems involving a trade 
from tens to the hundreds (Fuson & Kwon, 1990b). The children's actual 
solution procedures for finding sums over one hundred were not evident 
from their verbalizations, and they were not asked about these procedures. 
But some children did use multiunit quantities and some used regular ten- 
for-one trades conceptual structures in discussing their solutions. Most of 
the second graders solved such problems correctly, indicating a robust sup- 
port from their available conceptual structures for solving such problems. 

The situation for English-speaking children trying to add two-digit 
numbers is much more complex. A considerable proportion of U.S. 
second graders do not even have a multiunit-names conceptual structure for 
tens (e.g., they cannot say that the second position is the tens place) (Ross, 
1986), and few have a multiunit-quantity conceptual structure for ten (C. 
Kamii, 1986, 1989; C. Kamii & Joseph, 1988; M. Kamii, 1982; see also La- 
binowicz, 1985). They all do have available unitary structures, so they can 
add two-digit numbers by making a pile of objects for each addend and 
then counting all of the objects or by counting on by one from one of the 
numbers (e.g., for 37 + 25 counting on 25 words from 37: 37, 38, 39, . . . , 
62). The power of these unitary structures may be so strong that they can 
even interfere with structural materials intended to help children construct 
and use multiunits of ten in addition (i.e., materials showing collectible 
tens). For example, Madell (1985) reported that 5- and 6-year-olds using 
base-ten blocks (longs and units) to solve addition word problems requiring 
two-digit sums were reluctant to combine the tens. They counted by tens 
(used a decade word list: ten, twenty, thirty, forty, etc.) to find the name of 
a collection of blocks (e.g., counting "ten, twenty, thirty, forty, fifty, fifty 
one, fifty two, . . . , fifty nine" to find the name for 5 longs and 9 little 
cubes). To add 35 and 24, however, they counted by ones from 35: They 
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counted each of the ones on the 2 tens in 24 and then counted the 4 ones. 
Numbers in the teens were particularly difficult to deal with as tens and 
ones, and children frequently were 8 or even 9 years old before they did so. 
Before this time, they used unitary procedures. For example, they showed 
48 - 14 as 4 longs and 8 units but did not subtract 14 as 1 long and 4 units. 
Instead they traded one long for ten units so that they had a unitary presen- 
tation of 14 as fourteen units and then subtracted the fourteen units. 

This fixation on unitary conceptual structures interferes with the con- 
struction of multiunits of ten and, thus, has three negative consequences: 

1. Children do not see that they need to combine like multiunits (be- 
cause they do not have conceptual multiunits of ten). 

2. 	They do not see what they need to do when they get too many ones. 
3. 	 Even if they do come to understand these aspects at some level, they 

must switch back and forth between a unitary conceptual structure 
for finding the single-digit sum of a given multiunit and a multiunit 
conceptual structure for understanding the combination of like mul- 
tiunits and of trading for too many. 

Trading requires that a unitary sum be changed into a multiunit sum so that 
the multiunit can be traded (e.g., fourteen must be conceptualized as one 
ten four ones. Many first and second graders do not automatically know 
these ten-structured multiunit conceptions for the teen words and have to 
count on their fingers to find how many tens and ones are made from four- 
teen (Madell, 1985). Even when English-speaking children get better at 
knowing the tens and ones in single-digit sums between eleven and eighteen, 
in most cases they must still switch back and forth between the unitary pro- 
cedure with which they find the sum of the single-digit numbers for a given 
multiunit and the multiunit conception that directs their trading. 

Sequence ten-units. Some English-speaking children eventually begin 
to construct sequence/counting multiunit items of ten within the unitary se- 
quence structure (Cobb & Wheatley, 1988; C. Kamii, 1985, 1986; Resnick, 
1983; Richards & Carter, 1982; Steffe & Cobb, 1988; Steffe & von Glasers- 
feld, 1983; Thompson, 1982). These sequence ten-unit items permit chil- 
dren to count all, count on, count down from, count down to, and count 
up to by tens and ones. The earliest procedures use the decade word list to 
count by tens; all tens are counted on this decade word list, and then all the 
ones are counted. For example, 35 + 47 could now be solved by counting all 
by tens and ones: "10, 20, 30, 40, 50, 60, 70, 71, 72, 73, 74, 75, 76, 77, 78, 
79, 80, 81, 82" or by counting on from 30 by tens and ones: "30, 40, 50, 
60, 70, 75, 76, 77, 78, 79, 80, 81, 82." It is more difficult to count by tens 
from words not in the decade list, but eventually children may count on by 
tens and ones from one of the addends: "35,45, 55, 65, 75, 76, 77, 78, 79, 
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80, 81, 82." Under usual classroom conditions, these ten-unit items take 
considerable time to construct and seem initially to require perceptual sup- 
port of physical collectible multiunits of ten (objects grouped into tens). 
The previous examples were taken from Labinowicz (1985) and were carried 
out by 23 of 29 third graders using base-ten blocks to show both 35 and 47. 
The remaining 6 third graders were not even able to count all by tens and 
ones when using the blocks; they counted by ones. When blocks were avail- 
able only for one number (46 was given in digits and 57 was given in 
blocks), only 13 children were able to count on by tens and ones from 46. 
The others counted on by ones, evidently requiring the support of the tens 
blocks for both numbers to count on by tens and ones. 

Considerable other evidence describes the many difficulties English- 
speaking children have in constructing and using sequence ten-units for ad- 
dition of two-digit numbers. Steffe and Cobb (1988) outlined six kinds of 
increasingly complex conceptual ten-units that second-grade children con- 
struct within the number-word sequence over a period of many months and 
even years. They carefully described children's use of these ten-units in vari- 
ous counting tasks. These successively more abstract ten-units culminate in 
counting by tens without the perceptual support of materials (they call this 
use of iterable ten-unit items); this level was not reached by some of the sec- 
ond graders in their study, even at the end of the 2-year teaching experiment 
facilitating such constructions. Cobb and Wheatley (1988) found that only 
3 of 14 second graders interviewed early in the year could use iterable ten- 
unit items on any tasks. Three others could use sequence ten-unit items in 
counting tasks with the support of collectible ten-unit items; the remaining 
8 showed only a labeling use of ten similar to that identified as Level 2 by 
Ross (1986). C. Kamii (1986) reported that no Genevan first through third 
graders spontaneously counted a large number of objects by ten, and only 
14% and 5% of fourth and fifth graders, respectively, did so. Even imitat- 
ing an experimenter solving two-digit addition problems by counting on by 
tens was beyond the capacity of most first graders who counted on by 
ones (unpublished data from the counting-on subjects in Secada, Fuson, & 
Hall, 1983). Case studies in Behr (1976) document the slowness and com- 
plexity of second graders' construction of sequence ten-units. Children in 
various groups used different materials to support this construction (base- 
ten longs, bundled sticks, bead abacus). Many activities required them to 
write a number in three forms: (a) multiunit name (3 tens and 7 ones), (b) 
sequence decade form (30 + 7 ones), and (c) written marks (37). Children 
showed many confusions between the first two forms. 

There is little evidence about U.S. children's spontaneous solution proce- 
dures for two-digit subtraction problems. Madell (1985) described proce- 
dures requiring known decade facts (e.g., knowing that 50 - 30 is 20) and 
combining such known decade facts with counting down by ones or sub- 
tracting ones from the known decade fact. C. Kamii (1989) reported that 
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two-digit subtraction requiring trades was difficult for children in a Piage- 
tian second-grade classroom focused on supporting children's mathematical 
thinking; she suggested that it be postponed and multiplication (an additive 
procedure) be focused on instead. Because subtraction in U.S. classrooms is 
usually interpreted as take-away, and take-away leads to counting-down pro- 
cedures, the expected subtraction sequence multiunit solution procedures 
would involve counting down by tens and by ones. Because counting down is 
considerably more difficult for most children than is counting up, such se- 
quence ten-unit procedures would be slower to appear even than the addition 
ten-unit sequence procedures. Thus, the evidence at present indicates that 
the use of sequence ten-unit solution procedures is somewhat difficult for 
two-digit addition but is really formidable for subtraction. 

Difficulties in Adding and Subtracting Three-Digit 
and Four-Digit Numbers 

English words describe the values for the third and fourth positions in a to- 
tally regular way. Thus, these named hundred and thousand values can pro- 
vide the same kind of support to the three components of multiunit 
addition and subtraction that are provided by the named tens in Asian 
words. Four hundred plus three hundred can be easily seen to be seven hun- 
dred; two thousand plus six thousand can be easily seen to be eight thou- 
sand. As with Asian named tens, trading for multiunit sums above ten can 
be supported at least minimally by the multiunit-names conceptual struc- 
ture and supported considerably more by the multiunit-quantities and regu- 
lar ten-for-one and one-for-ten trades conceptual structures. Thus, provid- 
ing English-speaking children with physical collectible hundred and thou- 
sand multiunits to use in addition and subtraction situations could make 
their task of understanding multiunit addition and subtraction for these 
values as simple as are addition and subtraction of tens for Asian children. 

Unfortunately, the irregular and unnamed English tens create such barri- 
ers to understanding two-digit addition and subtraction that U.S. children 
are often not even given an opportunity to see problems with thousands 
until 2 or 3 years after they first see two-digit problems without trading 
(Fuson, in press-a; Fuson et al., 1988). Thus, they cannot take advantage of 
the potential support of the English regular named hundreds and thou- 
sands. Furthermore, the extensive experience with two-digit problems with 
their unnamed and irregular tens frequently leads to the construction of 
two different conceptualizations of multidigit numbers that interfere with 
the construction of collected multiunit quantities that are just added or 
subtracted and traded if necessary. These conceptualizations are sequence 
multiunit conceptual structures and concatenated single-digit conceptual 
structures. Children may have both of these, using the former for horizon- 
tal problems and the latter for problems written with positions aligned ver- 
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tically (Cobb & Wheatley, 1988). The sequence-multiunit conceptual 
structures involve counting forward or backward by chunks (sequence mul- 
tiunit~) within the sequence, as in the counting by tens and ones procedures 
discussed earlier for two-digit problems. The concatenated single-digit con- 
ceptual structure uses only the visual layout conceptual structure in Table 2; 
the phrase "concatenated single digit" specifies that no other conceptual 
structure is being used with the visual layout structure, so that each written 
mark is taken just as it appears-as a single digit written next to other sin- 
gle digits. 

Sequence-multiunit conceptual structures. Quantitative sequence-
multiunit conceptual structures for three- and four-digit problems require 
sequence pattern skills of skip-counting by tens, hundreds, and thousands, 
and they require that these skills be connected to cardinal collected mul- 
tiunits of tens, hundreds, and thousands so that counting by tens actually 
means to the counter that the quantity is being increased by ten with each 
count. Sequence pattern skills can be learned by rote just based on the 
sound patterns in the sequence. Thus, a child can learn the decade word list 
(ten, twenty, thirty, forty, etc.) as a memorized list without any understand- 
ing that the words refer to one ten, two tens, three tens, and so on, or that 
each word is a quantity ten more than the previous quantity. Similarly, chil- 
dren can learn to say patterns such as "fourteen, twenty four, thirty four, 
forty four," and so on, without seeing the tens and ones in this pattern 
(e.g., Thompson, 1982). It is not until such auditory counting patterns are 
related to cardinal quantities of tens and ones that they become multiunit 
conceptual structures that give quantitative meaning to multiunit words and 
written marks. In this way, sequence-multiunit conceptual structures are 
analogous to the unitary sequence solution procedures invented by most 
U.S. children. The sequence pattern skills of counting up or down begin- 
ning with an arbitrary number word, or of counting up or down a given 
number of words, may appear much earlier than quantitative sequence 
counting on and counting back that is connected to cardinal situations and 
can be used to solve cardinal addition and subtraction situations (Fuson, 
1988; Fuson et al., 1982; Steffe et al., 1983). 

In regular named-value Asian number words, it is difficult to separate 
sequence counting (counting by chunks of ten) and counting of collected 
multiunits (counting of tens) because the words collapse these: An Asian 
child looking at the physical collectible multiunits in base-ten longs and 
saying "one ten, two ten, three ten, four ten, five ten, six ten" may be say- 
ing the sequence via chunks of ten (ignoring the one ten one, one ten two, 
and so on, sequence words between the tens) or may be counting collected 
multiunits of cardinal tens. In English, these methods are differentiated by 
using the decade word list for sequence counting (ten, twenty, thirty, forty, 
fifty, sixty) and by counting the multiunits of ten for collected multiunits 



(one ten, two ten, three ten, four ten, jive ten, six ten or one, two, three, 
four, jive, six tens). In actual practice, Asian children who are adding two- 
digit numbers probably rarely use either procedure because by the time they 
face such problems they know most sums to ten. Thus, a problem such as 
35 + 32 is just seen to be 3 shi plus 3 shi is 6 shi, using their knowledge of 
3 + 3. English-speaking children could use collected multiunits of ten to 
solve the problem in the same way (3 tens plus 3 tens is 6 tens). However, 
their extensive use of unitary sequence solution procedures leads many of 
them to the sequence ten-unit procedures of counting by tens (ten, twenty, 
thirty, forty, fifty, sixty, or thirty, forty, ffty, sixty) rather than seeing thirty 
plus thirty as 3 tens plus 3 tens. Cobb and Wheatley (1988) reported that 
some second graders used each of these methods (sequence multiunits of 
ten and collected multiunits of ten) to solve two-digit problems written hor- 
izontally. Thompson (1982) found that, when children were provided with 
physical collectible multiunits of ten (base-ten block longs), they could do 
tasks using collected multiunits before they did similar tasks using sequence 
multiunits. 

Children's use of sequence ten-units to solve problems with two-digit 
numbers leads many researchers to focus on the extension of sequence mul- 
tiunit procedures to the hundreds and thousands as the meaningful way for 
children to understand three-digit and four-digit addition and subtraction. 
In some treatments, such counting skills are assumed to be required for 
comprehension of three-digit and four-digit addition and subtraction and 
of place value (e.g., Labinowicz, 1985; Resnick, 1983). Conceptual se-
quence hundred units enable children to solve three-digit sums and dif- 
ferences by counting on, counting down from, counting down to, and 
counting up to by hundreds, tens, and ones. Thus, 527 + 435 could be 
solved by counting on the hundreds and then the tens and then the ones 
(500, 600, 700, 800, 900, 920, 930, 940, 950, 957, 958, 959, 960, 961, 962) 
or by counting on by hundreds, tens, and ones from 527 (527, 627, 727, 
827,927,937,947,957,958,959, 960,961,962). However, such counting is 
evidently quite difficult for many second and third graders (Labinowicz, 
1985; Resnick, 1983; Thompson, 1982). They experience considerable diffi- 
culty changing from the hundred-unit items to the ten-unit items to the unit 
items. More than half the third graders interviewed in one study had diffi- 
culty making such unit changes even when they were counting these units 
only for a single multidigit number and had physical collectible multiunits 
in base-ten blocks to support such counting (Resnick, 1983). They made 
mistakes such as counting the ten units as hundreds (counting 6 hundreds 
and 5 tens as "one hundred, two hundred, . . . , eleven hundred") or as 
ones (counting 2 hundreds 7 tens 4 ones as "one hundred, two hundred, 
two hundred one, two hundred two, . . . , two hundred eleven"). There are 
few data on subtracting three-digit numbers by counting with sequence 
hundred-unit, ten-unit, and unit items, but such counting down from (or 
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down to or up to) would be at least as difficult as counting on and possibly 
considerably more difficult for the procedures involving counting back- 
ward. One could also construct sequence thousand-unit items and use them 
in counting procedures to solve four-digit addition and subtraction prob- 
lems. These, of course, would be even more difficult than the three-digit 
problems, for they would require yet another unit change and keeping track 
of four rather than three different kinds of multiunits. 

With these conceptual sequence multiunits, addition or subtraction situ- 
ations in which the sum for a given multiunit exceeds nine require that chil- 
dren be able to count over the transition point to the next higher sequence 
multiunit. Thus, a child must count by ones over a decade to solve a sum 
with more than nine ones, count by tens over a hundred to solve a sum with 
more than nine tens, and count by hundreds over a thousand to solve a 
number with more than nine hundreds. Such counting seems to be more 
difficult than counting by ones, tens, or hundreds without such changes, 
because children's counting is less automatized at these transition points 
(Fuson et al., 1982; Miller & Stigler, 1987; Siegler & Robinson, 1982) and 
because counting over a hundred or a thousand introduces a new unit that 
is especially salient (and thus may be distracting) because it is said first each 
time in the counting (Labinowicz, 1985; Miller & Stigler, 1987). Thus, for 
such problems, children may make errors at transition points such as "one 
hundred nine, two hundred, three hundred, . . ." or ". . . , one hundred 
nine, ten hundred." Bell and Burns (1981) reported that 9 of 30 beginning 
third graders could not count by tens from 180 to 210. Labinowicz (1985) 
found that 20 of 29 beginning third graders made errors in counting be- 
tween 94 and 124 when counting by tens. Combining all three units (ones, 
tens, hundreds) may be particularly difficult for speakers of irregular En- 
glish number words: 8 of 13 U.S. 6-year-olds who counted above one hun- 
dred counted by hundreds after 109 ("one hundred nine, two hundred"), 
whereas no Chinese 6-year-old did (Miller & Stigler, 1987). Negotiating 
these transition points is more difficult in English than in the Asian lan- 
guages, because the latter have clearer transition points because the compo- 
sition of numbers in the multiunits of hundreds, tens, and ones is always 
named and one cannot say values over ten. In English, children can easily 
say "ten hundred, eleven hundred, twelve hundred," and so on, and even be 
correct in such counting. The extensive use by adults as well as by children 
of unitary conceptions for two-digit numbers creates many nonstandard us- 
ages such as "nineteen eighteen" for 1918 Orrington Avenue, a street ad- 
dress, or "twenty-five hundred" for 2500. 

Use of a named-value size embodiment that shows physical collectible 
multiunits of ones, tens, and hundreds (e.g., base-ten blocks, bundled 
sticks) seems to facilitate children's counting by sequence ten-unit and hun- 
dred-unit items. Children were more successful in counting by ones, tens, 
and hundreds with base-ten blocks than without them, but second and 



third graders still made many unit change errors (Labinowicz, 1985; 
Thompson, 1982). The different sizes seem to help children keep track of 
the multiunit item with which the counting is being done, and the embodi- 
ment pieces keep track of how many multiunits have been counted on, up, 
or down as the pieces are counted. Labinowicz (1989) described many diffi- 
culties third graders had in finding the number of tens in larger numbers. 
Many of these difficulties involve confusion between a sequence multiunit 
conceptual structure and a collected multiunit conceptual structure; chil- 
dren combined sequence and collected multiunit structures for different 
parts of the multidigit number, finding the number of tens in one multiunit 
value but not in the other. For example, in answering how many tens are in 
132, children said that there were forty tens (adding the collected "ten tens" 
in one hundred to the sequence word thirty) or that there were one hundred 
three tens (adding the sequence word one hundred to the collected "three 
tens" in thirty two). Labinowicz found to be helpful a 15-min exercise with 
base-ten blocks on hundreds grids in which children coordinated their 
counting by tens (use of a multiunit sequence structure) with their counting 
of tens (use of collected multiunits). 

Most of the literature concerning child-invented algorithms for solving 
multidigit addition and subtraction problems involves a sequence multiunit 
conceptual structure (see Labinowicz, 1985, chapter 14, for a review of this 
literature; see also Cobb & Wheatley, 1988). Some of these methods involve 
the separation of the multidigit numbers into their decade parts and ones 
parts so that 54 + 28, for example, is solved as "50, 60, 70, 78, 79, 80, 81, 
82." The counting may be done from the larger tens and the larger ones, 
which may involve commuting the sequence decade and unit values for the 
two numbers (if these larger numbers are not in the same two-digit num- 
ber). Most of the examples in the literature of child-invented algorithms are 
limited to two-digit sums and differences (i.e., to sequence ten-units). There 
is little evidence concerning how easy it is for children to construct se-
quence hundred-units or thousand-units either spontaneously or with 
teacher or other-child support (except for the evidence already presented 
concerning problems children have at transition points) or concerning how 
difficult it is to use such sequence multiunits in invented or learned solu- 
tions for larger multidigit sums and differences. It seems to be much easier 
to invent addition procedures than subtraction procedures (see C. Kamii, 
1989, concerning relative numbers of children doing so for addition and 
subtraction in a Piagetian classroom). 

Some anecdotal evidence suggests that, when children who have se-
quence ten-unit structures for two-digit numbers begin to try to add and 
subtract three- or four-digit numbers, they may construct and use an amal- 
gamated sequence/collected multiunit structure in which they use collected 
multiunits for the hundreds and sequence multiunits for the tens. Evidently, 
the regular English-named hundreds facilitate the construction of the col- 
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lected hundred units. Some children in first- and second-grade classrooms 
in the Cognitively Guided Instruction Project (CGIP; see Carpenter, Fen- 
nema, Peterson, Chiang, & h e f ,  1989, for a description of the project) 
carried out mental solutions for three-digit addition problems such as 
486 + 379 by adding like values to find sums: "Four hundred and three 
hundred is seven hundred. Eighty and seventy is one hundred fifty so that's 
eight hundred fifty. Nine and six is fifteen so that is eight hundred sixty 
five." (Deborah Carey, personal communication, November 4, 1988). Ad- 
dition of the tens did not use collected ten-units: These children did not say 
"eight tens and seven tens is fifteen tens." Such collected ten-units were 
used by U.S. second graders who had used base-ten blocks to add and sub- 
tract four-digit numbers; they explained such a problem by saying "eight 
tens plus seven tens is fifteen tens; I have to trade ten of those tens for one 
hundred, so that is one hundred and five tens" (Fuson & Briars, 1990). 
How the children in the CGIP classrooms knew that "eighty and seventy is 
one hundred fifty" is not clear. Such knowledge could conceivably derive 
from sequence ten-units in two ways: It could be a learned fact from earlier 
counting on by tens, or it could come from use of a thinking strategy such 
as "eighty plus twenty from the seventy is one hundred, and fifty is left 
from the seventy, so the sum is one hundred fifty." If the written marks/ 
decade words associations were strong, the sum could also come from the 
visual pattern of written numerals "7 + 8 is 15, so 70 + 80 is 150." C. Ka- 
mii (personal communication, March 30, 1989) also reported that some sec- 
ond graders in a Piagetian classroom solved three-digit addition problems 
by collected multiunit addition of the hundreds (as in the previous exam- 
ple); these children used various means of adding the decade words. Thus, 
it may be that collected multiunits for hundreds and even thousands are 
fairly easy for some U.S. children to construct, even if they have used se- 
quence multiunits for the decades. 

The concatenated single-digit conceptual structure. Written marks 
for multiunit numbers are seductively like those for single-digit numbers. 
Multidigit number marks look as though they are concatenated single digit 
(CSD) numbers-single-digit numbers placed side by side. A 4, for exam- 
ple, looks the same whether it is in the ones, tens, or hundreds place (314 or 
341 or 431). Evidently, school instruction for many children does not en- 
able them to construct the conceptual structures below the second row in 
Table 2 or does not ensure that these conceptual structures are connected to 
the written marks and used when children are adding and subtracting mul- 
tiunit numbers. The school instructional focus, as judged by textbooks and 
by children's performance, seems, rather, to be on procedural rules that dic- 
tate what one does to the written marks. Children make a range of errors- 
violations of the correct procedural rules-that are consistent with an 
interpretation of multidigit numbers as CSD numbers (i.e., as a visual lay- 



out of single-digit numbers unconnected to any other conceptual structure). 
The correct procedural rules cannot be derived just from a CSD conceptual 
structure. Further rules are required to constrain which digits are added to 
(or subtracted from) which digits. These rote procedural rules are given in 
Table 4, which also contains many partially correct but incomplete rules. 
These are not all possible rules used by children, but these rules do generate 
the common errors and several infrequent errors made by U.S. children. All 
these errors are consistent with an interpretation of written marks as 
CSDs. 

The CSD structure is not just involved in addition and subtraction er- 
rors. It is used by many U.S. children on place-value tasks, and many chil- 
dren who calculate correctly also seem to use only a CSD conceptual 
structure along with the correct procedural rules in Table 4. Evidence con- 
cerning the widespread use of the CSD structure by U.S. children and the 
errors that result from the partially correct rules in Table 4 are discussed in 
the rest of this section. 

Children indicate use of the CSD structure in several different place- 
value tasks. When shown, for example, the numeral 16 and sixteen objects 
and asked to show in the objects the 6, the 1, and the 16, many elementary 
school children indicate six objects for the 6, one object for the 1, and all 
sixteen objects for the 16 (Behr, 1976; C. Kamii, 1985; M. Kamii, 1981; 
Ross, 1986, 1989; see also discussion in Labinowicz, 1985). For example, in 
a middle-class suburb of Chicago, the percentages of children doing so were 
100% of the first-grade children after place-value instruction was com- 
pleted, 49% of the fourth graders, 40% of the sixth graders, and 22% of 
the eighth graders (C. Kamii, 1985; C. Kamii & Joseph, 1988). When asked 
to read a three-digit number and then write the number that was one more 
than the given number, half the third graders studied gave answers reflect- 
ing a CSD structure. They increased by one the digit in one or more places 
other than the ones place, giving for 342 the answers 1342, 453,442, or 352 
(Labinowicz, 1985). Children also seem to use a CSD structure to decide 
which of two multidigit numbers is larger: 11 of 20 third graders sometimes 
ignored the position of digits and focused on a single digit in one number 
as being larger than a single digit in another number, choosing 198 as being 
larger than 231 (Labinowicz, 1985). Some were not able to justify their 
choices, but others did so with responses such as "The 9 is bigger than the 
1" or "The 98 is higher than 23 or 31." Ginsburg's (1977) Stage 1 for chil- 
dren's understanding of written number (in which they exhibit no verbaliza- 
ble meaning for the digits) fits the CSD structure. In the example protocol, 
the child says about the 123 he or she has just written for one hundred 
twenty three, the "1 is just 1, the 2 is just 2, and the 3 is just 3'' (p. 86). 

Ross (1986, 1988, 1989) found two early levels of place-value knowledge 
about two-digit numbers that reflect a CSD structure. In the first level, chil- 
dren are able to identify one digit as the tens and the other digit as the ones, 
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but no quantities are associated with the tens or ones (they are just verbal 
labels), and many children at this level reversed the tens and ones. Ross 
noted that this nonquantitative labeling level was sufficient for these chil- 
dren to succeed on many school place-value tasks. She also identified a 
more advanced level in which children seem to possess quantitative meaning 
for the tens and ones (they relate object subgroupings of tens and of ones to 
two-digit numbers) but in which they actually are just relating digit values 
or digit positions to available groupings without regard for the size of the 
group (they will say that the 6 in 26 refers to six groups of four and the 2 re- 
fers to the two left-over objects if presented with this non-base-ten grouping 
of 26 objects). Bednarz and Janvier (1982) reported "digit-by-digit" strate- 
gies that ignored the values of the digits; these were used by many French- 
speaking Canadian third and fourth graders in two tasks in which 
three-digit numbers with certain properties (e.g., greater than a given num- 
ber) were to be made. 

Use of the CSD structure and lack of knowledge of rote rules may not be 
evident if children are given multidigit addition problems written vertically 
with like relative positions aligned and if the sum for each column does not 
exceed ten. Children add the digits in each column and write each sum in 
the space below the column. Errors appear if the problem is written hor- 
izontally, if the columns are aligned incorrectly, or if the multidigit num- 
bers have different numbers of digits, because these situations all require 
knowledge that like multiunits (i.e., like positions relative to the rightmost 
position) must be added together. If this conceptually based understanding 
is lacking (i.e., if understanding of Component 1 in Table 3 is missing), 
correct vertical alignment of the multiunit numbers substitutes for this 
knowledge by placing like multiunits under each other so that the correct 
digits will be added to each other. Rote rule versions of vertical alignment 
are under Rule 1 in Table 4. The CSD structure by itself does not contain 
any information to direct the correct alignment or to correct an incorrect 
alignment. If asked to add two multidigit numbers written horizontally, 
children may not even keep the digits in each given number together (Rule 
la). A substantial number of second graders in Fuson and Briars's (1990) 
study, when asked on the pretest to rewrite the problem 67 + 1385 so that it 
would be easy to add these two numbers, dismembered the original num- 
bers and rewrote vertically all six digits or wrote 671 above 358 or wrote 67 
above 13 above 85. Children do seem to learn Rule lb  fairly readily. Chil- 
dren in that study rarely wrote the problem so that the l and the 5 stuck out 
on both sides of the 67, and no reports of such rewriting were found in the 
literature reviewed for this article. The correct Rule lc, however, is much 
more difficult to learn and is violated by many children; the fact that multi- 
digit numbers are written from left to right seems to lead many children to 
align the numbers on the left rather than on the right. The majority of the 
second graders in two different samples rewrote 67 + 1385 aligning them on 
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TABLE 4 

Rules for Adding and Subtracting CSD Numbers 


Number Rule Statement 

Addition Rules 

Rule 1 Write the numbers vertically, one above the other. 
a Do not break apart or reorder the single-digit numbers. 
b Align multidigit numbers on one side. 
c* Align multidigit numbers on the right. 

Rule 2 Add the single digits in each vertical column. 
Rule 3 If the sum is ten or more: 

a Do not write both digits of the two-digit sum. 
b The 1 from the two-digit sum must be written somewhere. 
C The 1 from the two-digit sum must be written in (added to) the adjacent 

column. 
The 1 from the two-digit sum must be written in (added to) the adjacent 

column to the left. 
If the sum exceeds 19, the tens digit is written. 
In the long addition algorithm, the rightmost digit in the two-digit sum is 

aligned under the added column and the leftmost digit is written in the next 
left position. 

Rule 4 A blank digit (a blank in a vertical column) 
a* should be considered to be a 0. 
b* x + o = x .  

Subtraction Rules 

Rule 1 Write the numbers vertically, with the bigger number on top. 
a Do not break apart or reorder the single-digit numbers. 
b Align multidigit numbers on one side. 
c* Align multidigit numbers on the right. 

Rule 2a Subtract the single digits in each vertical column. 

Rule 2b* Subtract the bottom number from the top number in each vertical column. 

Rule 3 If the bottom number exceeds the top number: 


a You cannot do that subtraction (in whole numbers). 

b You must put more in the top number so that it will 2 the bottom number. 

C You get more by taking what you need from another column. 

d You get more by taking one from another column and writing 1 in the 


needed column as a two-digit number. 
You get more by taking one from the adjacent column and writing 1 in the 

needed column as a two-digit number. 
You get more by taking one from the adjacent column to the left and writing 

1 in the needed column as a two-digit number. 
If the adjacent column to the left is a zero, you move to the first nonzero 

column on the left and take one from it and write 1 in the needed column 
as a two-digit number and you also write a 1 in each zero column. 

If the adjacent column to the left is a zero, you move to the first nonzero 
column on the left and take one from it and write 1 in the needed column 
as a two-digit number. 

(Continued) 
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TABLE 4 (Continued) 

i* If the adjacent column to the left is a zero, you move to the first nonzero 
column on the left and take one from it and write 1 as a two-digit number 
in the adjacent column to the right (continue using this rule until 1 is 
written in the needed column). 

Rule 4 A blank digit (a blank in a vertical column) 
a* should be considered to be a 0. 
b* X - O = X .  

Note. Asterisk by rule number indicates correct procedural rule. 

the left (Fuson & Briars, 1990). Labinowicz (1985) found that only 5 of 21 
third graders identified numbers aligned on the left as misaligned and then 
either rewrote them or added them mentally. Ginsburg (1977) reported that 
many interviewed children wrote down numbers aligned on the left. 
Tougher (1981) found that less than half of a class of third graders aligned 
numbers correctly on the right when they wrote down dictated problems for 
addition. Thus, Rule lc remains a considerable stumbling block for many 
U.S. children. 

Rule 2 seems to be learned fairly readily; U.S. first graders are fairly suc- 
cessful at adding two-digit numbers with no multiunits over ten. Rule 2 
may be relatively easy to learn, because it is supported by the physical ap- 
pearance of the vertical alignment of single digits. However, some children 
experience difficulty even with Rule 2. Behr (1976) described one second 
grader who insisted on adding all the single digits in both two-digit num- 
bers to find the sum (e.g., 31 + 42 = 10). 

Rote rule solutions to problems in which the sum of any given multiunit 
exceeds nine are given in Rules 3a through 3f. These rules substitute for the 
understanding of the third component in Table 3: understanding that two 
digits cannot both be written for a multiunit sum and that ten of that mul- 
tiunit must be traded for one of the next larger multiunits. Four examples 
of kinds of errors children make in such problems are given at the top of 
the addition errors in Table 5. Many children initially solve such problems 
by violating Rule 3a: They write the two-digit sum beneath its single-digit 
addends. Thus, the sum of 568 + 778 is 121316 (for problems written either 
horizontally or vertically). In a sample of almost all second graders in the 
Pittsburgh public schools, on the pretest, 66% of the children wrote at least 
one such two-digit sum; such errors comprised 65% of the errors made, and 
most children making such errors made them for all columns of a problem 
(Fuson & Briars, 1990). Proportions for a smaller sample from an economi- 
cally heterogeneous school system bordering on Chicago were 55% and 
52% (Fuson & Briars, 1990). Although such solutions violate Rule 3a (and 
the conceptual knowledge that such answers push digits into wrong posi- 
tions), they are consistent with a CSD structure-Nothing in this structure 
indicates that one cannot insert single digits wherever one wants. Many 



TABLE 5 

Multidigit Addition and Subtraction Errors Reflecting a CSD 


Addition Errors 

Write sum for each column 
(FB 189; F 47-48) 


5 6 8  

7 7 8 

2 13 16 


Vanish the one 

(FB 189; F 47-48) 


5 6 8  


-7 7 8  

2 3 6 


Carry to the leftmost 

(B 229) 


I 

' 1 6 8  


-1 5 6  


4 1 4  

Wrong alignment in long 

algorithm (G 116) 

8 7 


-3 9 


1 6  

1 1 
-
2 7 


Add extra digit into 

column (Fr 35) 


6 3 


-2 


1 1  

Reuse digit if uneven 

(Fr 35) 

6 3 

2
-

8 5 

Ignore extra digits 


(Fr 35) 

6 3 


-2 


5 


Conceptual Structure 

Subtraction Errors 

Smaller from larger (DMPE/D 115; 
FB 189; F 48-49; L 341; VL 174) 


2 5 2 

1 1 8 
-
1 4 6  


Top smaller, write zero 

(VL 176) 


2 5 2 


-1 1 8  

1 4 0  


Borrow unit difference 

(VL 150) 


4 9 


1 9 
-
3 0 

Always borrow left 
(VL 149) 

2 


4 6 '5 


-1 0  9 


1 6  6 


One borrow to multiple places 
(VL 175) 

6 


7 '0 '0 '2 

3 2 5  


6 7 8 7  

Multiple incorrect borrows 


across zero (D 325; VL 167) 

5 


i 

7 0 '0 '2 


2 5 

5 0  8 7 


Reuse digit if uneven 

(Fr 35) 


7 8 


-6 

1 2  


5 '4 


Note. Initials in parentheses are the source references and page numbers as follows: B is 
Baroody (1987); DMPE/D is Davis, McKnight, Parker, and Elrick (1979), cited in Davis 
(1984); Fr is Friend (1979); F is Fuson (1986); FB is Fuson and Briars (1990); G is Ginsburg 
(1977); L is Labinowicz (1985); VL is VanLehn (1986). 
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children do learn Rule 3a (that it is wrong to write two-digit numbers as a 
sum for a given column), but they do not have a conceptual structure to 
suggest what to do instead of writing both digits. They therefore violate 
Rule 3b: They write the digit for the ones in the ones position and do noth- 
ing with the 1 (the tens digit) in the two-digit sum. This second error in Ta- 
ble 5 was aptly described as "vanish the 1" (the 1 from the 16 vanishes) by a 
child in an interview in which children were to identify such a solution as 
correct or incorrect (Fuson & Briars, 1990). In the large urban sample, 13% 
of the pretest second graders made such vanishing errors, and 15% of the 
children did so in the heterogeneous suburban sample (Fuson & Briars, 
1990). Cobb and Wheatley (1988) reported that wrong procedures for addi- 
tion of two-digit numbers written vertically were evenly divided between 
writing both digits and vanishing the 1. The third addition error in Table 5 
conforms to Rule 3b but violates Rule 3c. This error can arise from the 
CSD structure, because it places no constraints on an incorrect generaliza- 
tion of the ten-for-one trading procedure as requiring the 1's to be traded to 
the leftmost column rather than to the adjacent column. For two-digit 
problems, this leftmost rule and the correct adjacent rule are indistinguish- 
able. Rule 3d is violated by children who forget the standard direction of 
adding and begin adding left to right; the 1 is then written in the column to 
the right. Several second graders receiving traditional school instruction 
made this error on a written pretest (Fuson & Burghardt, 1990b). 

Rule 3e arises only when three or more multidigit numbers are added. In 
such cases, Rules 3b through 3d only tell what to do with a 1. Thus, if the 
sum is 21 or 31, for example, the rules will yield the wrong procedure. If the 
two-digit sum does not contain a 1, the rules will not tell what to do. There 
is little evidence in the literature about children's errors on sums of three 
addends or more; teachers have reported to the author anecdotal evidence 
concerning violations of Rule 3d in which the 1 is written to the left and the 
tens digit is written in the ones place. Friend (1979) reported with Spanish- 
speaking Nicaraguan children that problems requiring a trade of 2 or more 
were more difficult than those requiring a trade of 1; that is, it was more 
difficult to understand that the tens digit (or the number of tens) was 
traded to the column to the left than to learn to write a 1 in the column to 
the left. Rule 3f concerns an error that arises in the use of a modified al- 
gorithm that avoids carrying. In this algorithm, each sum is written on a 
separate line, and these partial sums are added. Children evidently use their 
predisposition to align numbers on the left in this algorithm and make the 
error listed in the fourth row of Table 5, violating Rule 3f. 

Even many (perhaps in some settings, most) children who correctly solve 
multidigit addition problems requiring a trade seem to be using a CSD 
structure in which the 1 from the two-digit sum for a given column is writ- 
ten as a 1 in the next column, that is, they are using a CSD with Rule 3d. 
The 1 is not given a value either as a named value for the new column in 
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which it is written or as a ten coming from the two-digit sum. All third 
graders interviewed identified the 1 written above the tens column as a one 
and not as a ten (Resnick, 1983; Resnick & Omanson, 1987). Half the inter- 
viewed third graders who correctly added a problem identified the traded 1 
as a one rather than as a ten or as a hundred (for ten traded tens) in spite of 
probes such as "What does this 1 stand for?" and "What do the 3 and the 
2 (the tens digits) stand for?" and "What is the 1 worth?" (Labinowicz, 
1985). Silvern (1989) also found that most third, fourth, and fifth graders 
could not explain carrying using base-ten blocks; the carried 1 was not seen 
as a ten like the other tens in the problem. 

Addition situations in which one addend has more digits than the other 
addend@) seem to present special difficulties and require Rule 4. Friend 
(1979; cited in Davis, 1984) identified several different kinds of errors chil- 
dren make in such cases (see the last three errors in Table 5). These errors 
reflect a CSD structure, and each violates a different combination of rules 
from Table 4. The first error violates Rule la, Rule 2, and Rule 4: All three 
digits are added together. The second error also violates Rule 2 and Rule 4: 
The 2 is added to the tens column as well as added in its own ones column. 
The third error violates only Rule 4. The child does not know what to do in 
this case and so does nothing (violates Rules 4a and 4b) or knows Rule 4a 
but not Rule 4b and adds 6 + 0 = 0 ("0 is nothing, so I don't need to write 
anything"). 

In subtraction, the use of a CSD structure and the violation of needed 
subtraction rules given in Table 4 are not usually evident for problems in 
which every digit in the top number exceeds that in the same relative posi- 
tion in the bottom number and in which the columns are already correctly 
aligned. Given a correctly aligned vertical subtraction multidigit problem 
requiring no trades, children using the CSD structure just subtract the bot- 
tom digit from the top digit in each column, obtaining the correct differ- 
ence. As with addition, errors arise when uneven problems are given 
horizontally, when multiunit numbers are aligned incorrectly, when a trade 
is required in any problem (when the digit for any value in the minuend is 
less than the digit in that value for the subtrahend), or when the minuend 
has more digits than the subtrahend (see Table 5). Problems with zeros in 
the top number are particularly difficult. The rules for aligning multiunit 
numbers are the same for subtraction as for addition (see Table 4). Children 
who do not know the subtraction Rules la, lb, and lc  presumably make 
the same errors in aligning numbers for subtraction as these violations 
cause for addition (the alignment data in the literature concern addition 
rather than subtraction problems). Rule 2 for subtraction is more complex 
than Rule 2 for addition, because addition of multiunits is commutative 
(the addends can be added in either order), whereas subtraction is not. The 
multiunit belonging to the overall smaller multiunit number (the addend/ 
subtrahend) must be subtracted from the same kind of multiunit belonging 
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to the overall larger multiunit number (the sum/minuend). The CSD struc- 
ture in conjunction with the commutative subtraction Rule 2a (the ana- 
logue to the addition Rule 2) leads to the very prevalent error of subtracting 
the top digit from the bottom digit when the top digit is smaller (the 
"smaller-from-larger" subtraction error in n b l e  5). This error does not 
even conserve the multidigit numbers, for parts of each are being subtracted 
from each other (the subtraction of the largest multiunits will not be a 
smaller-from-larger error, because the minuend multiunit will be larger 
than the subtrahend multiunit). Such errors are the most common subtrac- 
tion errors made by U.S. children. In a sample of errors observed in the 
work of 1,147 students in Grades 2 through 5, 29% of the observed errors 
were of this type, and twice as many such errors were made as were made 
for the next most common type of error (VanLehn, 1986). Three fourths of 
the large urban sample of second graders made such errors consistently on 
the pretest, as did 85% of the heterogeneous suburban sample (Fuson & 
Briars, 1990). This was the most common error made on two-digit subtrac- 
tion problems by the third graders interviewed by Labinowicz (1985). 
Knowledge of the noncommutative Rule 2b, but no knowledge of the how- 
to-get-more Rules 3b through 3i, leads to the second rather creative error in 
Table 5: Children write 0 as the answer for columns with smaller top num- 
bers, indicating that the column cannot be subtracted or that they are left 
with 0 when they subtract as much as they can subtract. 

Many children do learn some of the how-to-get-more Rules 3b through 
3i. Knowledge of the partial Rules 3b through 3e and 3g and 3h lead to 
characteristic errors. All these partial rules are consistent with use of a CSD 
structure in which each written mark has only a single-digit meaning; no 
named value or relative position value of any digit is considered in these 
rules. Children may learn that they must put more in the top number and 
then just write a 1 in the needed column without taking it from any other 
digit (Fuson & Briars, 1990); this use of Rule 3b violates equivalence of 
trading and changes the value of the top number. Rule 3c generates an error 
that epitomizes the CSD structure: Just enough is taken from another digit 
to make the top number equal the bottom number (see the third error in Ta- 
ble 5). This error does maintain equivalence in trading (4 are taken from 
the 8 and added to the 5 to make 9), but it ignores any position multiunit 
value of the digit. The fourth error in Table 5 demonstrates Rule 3d and is 
the analogue to the similar error in addition (the third addition error in Ta- 
ble 5). Rule 3e is almost the correct Rule 3f, except that the 1 is taken from 
the right instead of from the left; children occasionally make such errors 
(e.g., Fuson & Burghardt, 1990b). Rule 3f works for all problems in which 
there is not a 0 in the minuend. Where trading must be carried out across 
one or more zeros, children demonstrating Rule 3f may not demonstrate 
Rule 3i. Trading across zeros is quite difficult for many children. The "one- 
borrow-to-multiple-places" error produced by Rule 3g recognizes that 
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something must be done to all the 0 columns and "fixes" them all at the 
same time (makes them bigger than the subtrahend digits), but it ignores 
equivalence in trading because a single one from the first nonzero column is 
given to every column needing a 1. This was the second largest subtraction 
error category reported by VanLehn (1986). Davis and McKnight (1980) 
found that every third and fourth grader given the problem 7002 - 25 writ- 
ten in vertical form initially made the "multiple-incorrect-borrows-across-
zero" error shown in Table 5, and a substantial proportion of the VanLehn 
errors were of this type. This error displays Rule 3h; it maintains equiva- 
lence of single units (a one is subtracted from some digit each time a 1 is 
added to-written by-another digit), but the values of the digits and the 
value of writing the 1 as a tens digit are not used. As with addition, sub- 
traction problems in which the minuend has more digits than the subtra- 
hend may lead to errors. Friend (1979, cited in Davis, 1984) reported a 
subtraction error of reusing a digit that is the same as the addition error of 
the same name (see Table 5). 

Finally, as with addition, many children who do subtract correctly for 
problems that require trading demonstrate only a CSD structure in which 
the trading procedure is a rule-based procedure involving the trading of 
ones from one single digit to another single digit; no multiunit values are 
involved in the trading. For example, only 8% of third, fourth, and fifth 
graders who borrowed correctly on a test of written subtraction problems 
agreed with an explanation of borrowing from the hundreds to the tens po- 
sition that described taking a hundred away from the hundreds position; 
many children saw borrowing as exchanging a one (Cauley, 1987). VanLehn 
(1986) analyzed the errors in a large corpus of multidigit subtraction prob- 
lems and concluded that 85% of these errors could arise by induction based 
on visual-numeric features of correctly solved but possibly limited exam- 
ples. An analysis of these features by this author indicated that all these vis- 
ual-numeric features were consistent with a CSD structure used in 
conjunction with a visual layout structure (from Table 2). An examination 
of the remaining 15% of the errors indicated that all these errors were also 
consistent with a CSD structure. Many of the errors in this corpus violated 
the multiunit quantities and the regular ten-for-one or one-for-ten trades 
conceptual structures. Thus, the CSD structure may be almost universally 
used by children making subtraction errors, and multiunit conceptual struc- 
tures either are not possessed or are not used by children making most of 
these errors. Several different computer programs that simulate multidigit 
subtraction and produce errors typically made by children have been writ- 
ten (see VanLehn, 1986, for a discussion of the several programs in the 
Brown and VanLehn research program; see Young & O'Shea, 1981, for a 
description of a different approach to this problem). All these programs use 
only a CSD structure in which digits have locations in certain columns but 
do not take on different quantitative multiunit values in these columns. 



CONCEPTUAL STRUCTURES FOR MULTIUNIT NUMBERS 381 

Trades may be described in articles as a ten-for-one or a one-for-ten trade, 
but the procedures the computer programs produce and the child error data 
the programs are written to imitate do not require any notion of ten but 
only rules about writing little 1's. Thus, the CSD structure is used by many 
individuals who analyze children's errors as well as by children themselves. 

CLASSROOM EXPERIENCES THAT SUPPORT 

CHILDREN'S CONSTRUCTION OF CONCEPTUAL 


STRUCTURES FOR MULTIUNIT NUMBERS 


How can U.S. English-speaking children be helped to construct the concep- 
tual structures for multiunit numbers that are required to understand place 
value and multiunit addition and subtraction? Qpical school instruction 
currently leads most children at best to use of a CSD conceptual structure 
with correct knowledge of all the rules in Table 4 and at worst to knowledge 
of only the incorrect rules in Table 4. Thus, the conceptual structures that 
are particularly lacking are the multiunit-quantities and regular ten-for-one 
and one-for-ten trades conceptual structures, but even the multiunit-names 
conceptual structure is problematic for some children at present. Materials 
that display physical collectible multiunits help children construct the con- 
ceptual collected multiunits that constitute the multiunit-quantities concep- 
tual structure. Base-ten blocks were invented by Dienes (1960) precisely for 
this purpose; bundled sticks have been used fairly frequently in the class- 
room, and other materials can also be used. Considerable evidence exists 
that use of physical collectible multiunits helps children construct the mul- 
tiunit-names, multiunit-quantities, and regular ten-for-one and one-for-ten 
trades conceptual structures. This evidence is briefly described. The follow- 
ing sections of this article explore relationships among the conceptual 
structures, aspects of linking all the conceptual structures, detrimental fea- 
tures of present school multidigit learning and teaching, and three alterna- 
tive approaches to constructing multiunit conceptual structures. The final 
four multiunit structures listed in Table 2 will not be considered in this arti- 
cle, because those structures concern multiunit structures used in multipli- 
cation. All the other conceptual structures in Table 2 can be called the 
additive multiunit conceptual structures, because they are used in multiunit 
addition and subtraction. 

Effects of Materials That Display Collectible Multiunits 

Materials that display physical collectible multiunits can help children un- 
derstand place-value concepts (i.e., construct and relate the first five con- 
ceptual structures in Table 2). Second graders who worked extensively 
adding and subtracting four-digit numbers using base-ten blocks demon- 
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strated considerably better knowledge of place-value concepts than that re- 
ported in the literature for third and even fourth and fifth graders receiving 
standard instruction (Fuson & Briars, 1990). All second graders spontane- 
ously and correctly identified the tens place by name when justifying their 
written addition or subtraction procedure, and 92% of them did so for the 
hundreds place. Second-grade classes averaged around 88% on tasks re- 
quiring translations of mixed-order named-value words and digits (e.g., 4 
tens 6 hundreds 3 thousands 9 ones) to written marks and vice versa. Thus, 
most of these second graders attended to the named-value words as well as 
to the digits, in contrast to more than one third of the third and fourth 
graders who focused only on the digits, ignoring the words, on a more com- 
plex task (Bednarz & Janvier, 1982). Labinowicz (1985) found in one class 
that, of the 14 third graders unable to add one more than or ten more than 
342, 10 were able to find one more than and 8 could find ten more than 
when using base-ten blocks. Behr (1976) also reported for second graders 
facilitative effects of using base-ten blocks on such tasks and on place-value 
tasks involving naming digit positions. 

Base-ten blocks or collectible multiunits can also help children under- 
stand multiunit addition and subtraction (Cauley, 1987; Fuson, 1986; Fu- 
son & Briars, 1990; Labinowicz, 1985; Resnick, 1983; Resnick & Omanson, 
1987; Swart, 1985; Tucker, 1989). Tucker (1989) described a case in which 
simply showing one multiunit addition problem in blocks was sufficient to 
enable a girl who was previously familiar with the blocks to self-correct her 
error of aligning numbers on the left; looking at the blocks enabled her to 
see that like values must be added to like values and, thus, the multidigit 
marks must be aligned on the right. In one study, 100% of the second grad- 
ers who had used the blocks aligned written uneven problems (e.g., 
286 + 79) correctly on the right instead of making the common error of 
aligning such problems on the left (Fuson & Briars, 1990). First graders 
who used the blocks showed much better performance on two-digit and 
three-digit addition and subtraction than did first graders receiving stand- 
ard instruction without the blocks (Swart, 1985). Many third graders who 
were making the subtraction error of subtracting the smaller top number 
from the larger bottom number corrected their subtraction procedure after 
working with base-ten blocks (Labinowicz, 1985). An introduction to mul- 
tiunit subtraction with the blocks enabled older children making trading er- 
rors in written computation to correct these errors (Resnick, 1983; Resnick 
& Omanson, 1987). Reminding second graders who were making errors in 
written addition and subtraction procedures and who had initially learned 
multiunit addition and subtraction with base-ten blocks to "think about 
the blocks" enabled most of them to self-correct their own errors, even for 
problems with trading across zero (Fuson, 1986). Learning multiunit addi- 
tion and subtraction with base-ten blocks enabled second graders to differ- 
entiate correct from the most common incorrect written procedures and to 
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explain the addition and subtraction trading procedures in terms of trades 
between the named values of the marks (Fuson & Briars, 1990). Not a sin- 
gle interviewed child identified the traded 1 as a one, in marked contrast to 
children receiving usual instruction. Cauley (1987) found in one session 
that the use of bundled sticks with second and third graders who had not 
seen them before enabled several of them to conserve the value of the minu- 
end in subtraction and enabled several others to establish correct trade rules 
for tens and for hundreds. 

Although even one session of using collectible multiunits can be very 
helpful, such use does not guarantee the construction or use of collected 
multiunits for English words or written marks. Resnick and Omanson 
(1987) found that after the lesson with base-ten blocks, many of their in- 
structed upper grade children regressed to making their old subtraction er- 
rors. Madell (1985) reported observing many children making unitary 
count/cardinal rather than multiunit use of base-ten longs and cubes in 
adding and subtracting two-digit numbers. Ross (1988) found that many 
second through fifth graders who had used base-ten blocks in their class- 
rooms, as well as high proportions of children sampled from a wide range 
of schools receiving different kinds of mathematics instruction, had only 
her Level 3 "face-value" meanings for tens and ones in which these words 
referred to some aspect of grouped objects but not to quantities of tens or 
of ones. She emphasized that mere use of collectible multiunit embodi- 
ments does not ensure that children construct multiunit-quantities concep- 
tual structures for written marks (Ross, 1989; her discussion did not use 
these terms, which are introduced in this article). The third- and fourth- 
grade children interviewed by Davis and McKnight (1980), all of whom 
showed errors on the problem 7002 - 25 and on similar problems with ze- 
ros in the minuend, had used base-ten blocks for place-value activities, al- 
though not for multiunit addition and subtraction. Cobb (1987) discussed 
the use of base-ten blocks and underscored the difference between the 
blocks possessing certain mathematical features and children seeing/con- 
ceptualizing these features in the desired ways; this is the distinction cap- 
tured by the use in this article of "collectible" and "collected" multiunits. 
Labinowicz (1985) detailed problems some children had in using base-ten 
blocks in a wide range of place-value and addition and subtraction tasks. 
Not all children immediately see the same collectible multiunit items or re- 
late them to other knowledge. However, many of the children's difficulties 
described in this book occurred on tasks requiring multiunit sequence 
counting rather than just collected multiunits-They involved counting by 
tens and hundreds as well as by ones. In spite of many difficulties noted, 
the overall thrust of Labinowicz's summaries of the use of the blocks in 
many tasks is that even brief use was often helpful. 

Use of an embodiment that does not display physical collectible mul- 
tiunits may confuse children and facilitate use of the inadequate CSD struc- 
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ture, because it gives no support for the construction of collected multiunits 
to give quantitative meaning to the named values. Labinowicz (1985) found 
that, when third graders who correctly identified 231 as larger than 198 
were shown this same problem embodied in different-colored same-size 
chips (ones green, tens yellow, hundreds a third color), some of them were 
confused and changed their answer to reflect a CSD structure. In contrast, 
base-ten blocks were helpful in enabling children to focus on the largest 
value and change answers from incorrect to correct. Behr (1976) also found 
with second graders that base-ten blocks were more helpful on a range of 
place-value and multiunit addition and subtraction tasks than was an aba- 
cus. Extensive work making groupings of different sizes using colored chips 
or other nonsize embodiments would seem to foster in many children the 
face-value (superficial grouping) orientation discovered by Ross (1988): The 
temporary groupings of many kinds, combined with the lack of perceptual 
support (collectible multiunits) for the construction of collected multiunits, 
seem likely to engender in many children a superficial nonquantitative anal- 
ysis of grouped situations. Money (dollars, dimes, pennies) is often used in 
textbooks to show hundreds, tens, and ones values. This embodiment has 
three problems. First, it may be confusing to some primary school children, 
because the dime is smaller than the penny and, thus, does not seem to be 
ten times as large as the penny. Second, the other coins (nickel, quarter) do 
not fit nicely within the ten-for-one trades in the positional marks system. 
Third, we ordinarily write dimes and pennies as tenths and hundredths, us- 
ing a decimal point after the dollars ($5.62), so dimes and pennies are really 
an embodiment of decimal positions and not of whole number tens and 
ones. 

Relationships Among the Conceptual Structures 
for Multiunit Numbers 

The first five multiunit conceptual structures in Table 2 are not structurally 
isomorphic. The first two ("visual layout" and "positions ordered in in- 
creasing value from the right") are features of the unnamed positional 
marks, and the second two ("multiunit names" and "words ordered in de- 
creasing value as they are said") are features of named-value English words. 
The multiunit-quantities conceptual structure gives the meaning to the mul- 
tiunit-names structure, and it gives the values to be used in the position or- 
der of the marks and the word order of the words. These relationships 
among the conceptual structures need to be remembered when designing 
experiences to help children construct and relate all these conceptual struc- 
tures. The relationships involved are displayed in Figure 1. The single ar- 
rows show the simpler isomorphic relationships that need to be constructed 
between elements of structurally similar systems (the vertical connections 
within the named-value systems and within the unnamed positional sys- 
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Named Value System Unnamed Positional System 
of English Number Words of Written Number Marks 

four thousand two hundred fifty seven 

Movable Unnamed Positional Marks 

Block Words 

four two f ~ e  seven four two five seven 

cubes 

FIGURE 1 Relationships among words, marks, and multiunit conceptual structures. 

terns), and the double arrows show the crucial, more difficult relationships 
that need to be constructed across the named-value and unnamed posi- 
tional systems. The top boxes show the English words and the written 
marks: the multiunit-names and visual-layout conceptual structures. The 
top box on the left also shows "words ordered in decreasing value as said," 
because the English words shown are said in the correct value order. How- 
ever, the collectible embodiment to support the construction of multiunit 
quantities shown in the middle on the left is required to give the value 
meanings to the English multiunit names and value order to "words or-
dered in decreasing value as said." It is also required to give position order 
to the movable unnamed positional embodiment in the middle on the right 
and to construct the "positions ordered in increasing value from the right" 
structure for the written marks on the top right. The bottom boxes show 
names for the embodiments in the second boxes; these provide verbal labels 
that permit users of the embodiments to discuss the embodiments in the 
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second boxes. Base-ten blocks are shown for multiunit quantities, but any 
embodiment that displays collectible multiunits could be in that second box 
on the left. The embodiment on the right is index cards, each with a single 
digit written on it. This embodiment has several unnamed positional prop- 
erties: (a) A digit can be put into any position; (b) a digit out of its position 
affects the relative position of other digits (digits can be easily put into or 
taken out of the row of digits); and (c) the digit row by itself does not name 
any values. Any embodiment that displayed these properties could be sub- 
stituted in this box. 

The collectible multiunits need to be arranged in the increasing right-to- 
left order shown so that the relative positions of the marks can take on 
their correct standard meaning. This right-to-left increasing order is an ar- 
bitrary feature of our written marks and must be shown to children; they 
cannot deduce it. Once this ordered relationship is established for the col- 
lectible multiunits, however, the digit cards can show the unnamed posi- 
tional nature of the marks compared with the named value of words and 
multiunit quantities. Scrambling the blocks does not affect the quantity 
(the same multiunits are still there), but scrambling the digit cards does af- 
fect the quantity, because the multiunit values adhere to the positions and 
not to particular digits. The slanted arrow is the crucial relationship be- 
tween multiunit quantities and the visual layout of the written marks; this 
is the relationship that seems to be so rarely constructed from usual class- 
room experiences. 

The ten-for-one and one-for-ten trades conceptual structures arise from 
examining the quantitative relationship between contiguous multiunit 
quantities. Collectible multiunits enable children to ascertain that there are 
ten little cubes in one long, ten longs in one flat, and ten flats in one big 
cube (the same ten-for-one relationship holds for other ten-based collectible 
multiunits). Initially each ten-for-one relationship can be seen and related 
to the written marks. When a child has had experience with several such 
trades (e.g., at least the three trades involved in the first four named val- 
ues), the child then may reflect on all the trades and see that they are all the 
same. In this way, the regular ten-for-one trades conceptual structure can 
be constructed and linked to English words and to written marks. The re- 
verse regular one-for-ten trades conceptual structure can arise as a similar 
reflection on subtraction trades across several positions. 

Some aspects of these multiunit conceptual structures require experience 
with several different multiunits to understand the attributes and relation- 
ships involved. It is possible to comprehend that large numbers are built up 
from different-size multiunits only if one sees larger and larger multiunits. 
The regular ten-for-one trades cannot possibly be understood as regular re- 
peated trades unless one sees two or three such trades. The visual layout of 
written multiunit marks as several horizontal positions for single-digit 
marks requires seeing three or four such positions. For all these reasons, 
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structures for multiunit numbers seem more easily constructed when chil- 
dren have an opportunity to experience and then reflect on several different 
multiunits. Furthermore, the many special difficulties of English words that 
interfere with the simple and regular relationships portrayed in Figure 1 are 
confined to multiunits of ten. Multiunits of hundreds and thousands are 
supported (named regularly) in the English words, and a regular relation- 
ship between English words and written marks also exists for the third and 
fourth marks positions. Thus, allowing children to work as soon as possible 
with collectible multiunits for three or four positions would seem to be ad- 
vantageous for the construction of all the conceptual structures for mul- 
tiunit numbers. 

'When one begins to add and subtract multiunits of ten, hundred, and 
thousand, one can think of the digits in a problem with a multiunit-quanti- 
ties conceptual structure or with a regular one-for-ten trades structure. For 
example, if the tens digits are 8 and 6, one can think in English, "Eight tens 
plus six tens are fourteen tens. Ten of those tens make a hundred, so the 
sum is one hundred four tens. Write the four tens and trade the hundred 
over to the hundreds column." Or one can ignore the fact that the digits are 
tens and think "Eight and six are fourteen. That is one ten and four ones. 
Write the four ones and trade the ten over to the next column." The latter 
regular ten-for-one trades conception is an efficient one that will apply to 
digits in any position. Some evidence exists with U.S. and with Korean chil- 
dren that some children first generalize the ten-for-one trading with units to 
the tens and hundreds positions and use only a regular ten-for-one concep- 
tual structure in thinking about addition. Other children fairly quickly 
think about this addition using a multiunit-quantities conceptual structure. 
Full understanding and efficient carrying out of multidigit addition and 
subtraction would seem to involve an integration of these two conceptual 
structures so that one might use the regular ten-for-one trades structure 
when carrying out addition but be able to use the multiunit-quantities 
structure when explaining or justifying the procedure. Most second graders 
in the Fuson base-ten block studies (Fuson, 1986; Fuson & Briars, 1990) 
used multiunit-quantities structures in explaining multidigit addition and 
subtraction, indicating that this is within reach of most second graders. 
Some lower achieving second graders and some average-achieving first 
graders did use only regular ten-for-one trades structures and did not ever 
say that a traded 1 in the hundreds column was a hundred but only that it 
was a ten. Many Korean second graders who had not yet learned three-digit 
addition carried out such addition correctly but described it only with regu- 
lar ten-for-one trades conceptual structures; they also did not ever identify 
the traded 1as a hundred but only as a ten. Almost all Korean third graders 
did identify the traded 1 as a hundred, even though many still also de- 
scribed addition with a regular ten-for-one trades structure; thus, they had 
evidently integrated these two structures and could use either when neces- 



388 FUSON 

sary. Thus, it may be that weaker and younger children cannot integrate the 
multiunit-quantities and regular ten-for-one trades conceptual structures 
initially. Alternatively, they may have just had insufficient support in the 
classroom for making this integration, or our interviews did not probe suf- 
ficiently to uncover this knowledge. 

Classrooms need to provide activities that help children construct the 
conceptual structures and the arrow relationships in Figure 1. Two such ac- 
tivities that use all these conceptual structures and relationships are mul- 
tiunit addition and multiunit subtraction requiring trading. The written 
marks give no clues about which digits to add or subtract; the English 
names and collectible multiunits do suggest adding or subtracting like mul- 
tiunit~. Addition and subtraction situations that require trades raise all the 
important understandings that must be constructed: Writing two digits for 
one value pushes other digits out of their correct relative positions; trading 
when there are too many or not enough requires ten-for-one or one-for-ten 
trades (trading requires one to notice the quantity in the traded multiunit); 
and situations with blanks or zeros raise and, thus, provide an opportunity 
to understand the difficult mappings between English words and written 
marks. Thus, all these conceptual structures and relationships can be con- 
structed while learning to understand and carry out multiunit addition and 
subtraction if collectible multiunits are available during this learning. 

The necessity for collectible multiunits, the nature of the relationships 
that must be constructed, the advantages of moving as soon as possible to 
four-digit numbers, and the value of multiunit addition and subtraction sit- 
uations with trading as a setting for constructing the additive multiunit 
conceptual structures all arise from the attributes of the named-value En- 
glish words and the unnamed positional system of written number marks. 
It is not clear a priori how early such an approach can be taken with U.S. 
English-speaking children and whether ordinary teachers can implement 
such an approach without extensive in-service training and in ordinary 
classroom conditions. A series of studies has indicated that such an ap- 
proach can be successful with second graders (Fuson, 1986; Fuson & Briars, 
1990). Second graders at all achievement levels, except those functioning at 
a low first-grade level, showed evidence of all the additive multiunit concep- 
tual structures and relationships among them and demonstrated multiunit 
addition and subtraction competence considerably above that reported with 
usual school instruction (details are reported in the previous sections with 
the references to these studies). 

Thus, U.S. English-speaking children are not doomed to use rote rules 
and a CSD conceptual structure and to inadequate understanding of place 
value and of multiunit addition and subtraction. Classroom learning and 
teaching focused on the construction of multiunit conceptual structures can 
lead to a radically different outcome. 
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Linking the Additive Multiunit Conceptual Structures 

Frequent multiple verbalization using English words, block words, and un- 
named-marks words can help children build all the necessary links among 
the conceptual structures. These words help to direct children's attention to 
critical features of the mathematical systems and embodiments and facili- 
tate communication among the participants in a learning-teaching setting. 
In the Fuson base-ten block studies, operations on the blocks were de- 
scribed by the teacher or by a child as they were being carried out, fre- 
quently with at least two sets of words. For example, while trading ten small 
cubes for one long, the trader would say, "I'm trading ten of these baby 
cubes for a long, ten ones for one ten, and I'm putting the traded long here 
at the top of the longs column, the tens column." Or when reading the fi- 
nal answer for a problem, one might say, "So the sum is five six eight zero, 
five thousand six hundred eighty." These running commentaries served to 
help direct children's attention to the particular important features of a 
given situation, for example, that the trade was ten ones for one ten and not 
just many (unspecified) for one. This emphasis on verbalization is consist- 
ent with results reported by Resnick and Omanson (1987) concerning a pos- 
itive relationship between the amount of verbalizing and the amount of 
learning with the blocks and with recommendations by Thornton and 
Wilmot (1986) concerning the necessity for learning-handicapped children 
to hear themselves speak in order to learn. Unnamed-marks words are par- 
ticularly useful in the beginning in facilitating the participation of children 
who have not yet learned the English words, and later they facilitate discus- 
sion of the importance of the position of the word or digit. 

When adding and subtracting with the blocks, the blocks-to-written- 
marks links need to be made strongly and tightly: Each step with the blocks 
needs to be immediately recorded with the written marks. In my own early 
work with multibase blocks with children and with teachers (work that pre- 
ceded the tight-link approach used in Fuson, 1975, and in Bell et al., 1976), 
it became clear that adults' and children's usual tendency in using the 
blocks is to solve a whole problem with the blocks and then just write down 
the answer obtained with the blocks. If children or teachers are allowed to 
use blocks in this way, written marks do not "take on" the named-value 
collected multiunit meanings of the blocks, and written trading procedures 
do not become meaningful. Most children (and even most teachers) do not 
possess the cognitive resources to remember the whole procedure with the 
blocks and connect this whole procedure to the written procedure. Children 
are able to reflect on one block step at a time, however, and then describe/ 
remember this block step as they record this step with the written marks. 
Recording of block operations with the marks also facilitates reflection on 
what has been done with the blocks, because one has to write down a cet- 
tain number in a certain location. Many teachers evidently underestimate 
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this need to make very tight connections-or even any connections at all- 
between the blocks and the mathematical marks. Hart (1987) reported that 
this need is not necessarily seen in England by teachers using the blocks, 
who frequently make minimal or even no links between these two, aban- 
doning the blocks very soon after introducing the written marks. 

Many discussions of the use of physical embodiments to support the 
construction of meaning for mathematical marks emphasize the impor- 
tance of helping children construct initial links from embodiments (mul- 
tiunit quantities) to written marks (e.g., Beattie, 1986; Bell et al., 1976; 
Davis, 1984; Dienes, 1960, 1963; Hiebert, 1984; Moser, 1988; Resnick, 
1982; Skemp, 1981; Underhill, 1977). However, the reverse marks-to-mul- 
tiunit-quantities links were also found to be very important in Fuson 
(1986). After some period of time, errors began to creep into written-marks 
procedures for some children. For most interviewed second graders with er- 
rors, asking them to "think about the blocks" was sufficient for them to 
self-correct their own errors, even with problems with zeros in the top num- 
ber. Thus, their mental conceptual multiunit structure for the blocks was 
strong enough to direct correct marks procedures, but they did not always 
access this conceptual structure when doing a written problem. Frequent 
distributed practice of a few multiunit addition and subtraction problems 
during which children are asked to think about the blocks and check the ac- 
curacy of their procedures may serve to help prevent errors from creeping 
into written procedures and increase the frequency with which children will 
spontaneously make the marks-to-blocks link to check on their own proce- 
dures. The necessity of emphasizing such marks-to-blocks links was recog- 
nized by Dienes (1963) when discussing how easy it is for symbolism to 
become autonomous without occasional feedback to the experiences from 
which the symbolism has been derived, by Resnick and Omanson (1987) in 
discussing the need for interjecting semantic critics into the computational 
procedure, and by Thornton and Wilmot (1986) in discussing the use of 
manipulatives with learning-handicapped students. 

Many discussions of using embodiments generally and of using base-ten 
blocks specifically assume the validity of Bruner's (1966) suggestion of the 
importance of a pictorial (iconic) level connecting concrete and abstract 
work. They recommend that a period of drawing pictures of the base-ten 
blocks or other pictorial kinds of activities be interspersed between work 
with the blocks and work with the written standard positional base-ten 
marks (e.g., Davis, 1984; Heddens, 1986; Underhill, 1977). The use of 
Bruner's concrete-pictorial-abstract continuum in this context ignores the 
fact that the blocks and the written marks are not endpoints on a single 
continuum: They are structurally different systems that must be connected. 
Pictures have the same properties as the blocks (and different properties 
from the marks), but they are very complicated and time consuming for 
children to produce as drawings. Pictures may even be much more difficult 
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for children to comprehend, let alone produce. Behr (1976) found that sec- 
ond graders had great difficulty with problems asking a child to find one 
more or less than, ten more or less than, or one hundred more or less than a 
given number when the problems were presented in the iconic mode (with 
pictures of base-ten blocks), but many children answered successfully when 
given the blocks themselves. In the Fuson base-ten block studies, children 
easily made links directly between the written marks and the base-ten 
blocks, as indicated in Figure 1. It is not clear at this time what, if any, ad- 
vantages are provided by pictures, and there are definite disadvantages. 

It may take a long time for a given child to construct conceptual col- 
lected multiunits and link them to written marks and to English words. 
Children in the Fuson block studies varied from a few days to several weeks 
before they felt comfortable with the written marks alone and could discuss 
addition or subtraction of the marks using English words or block words. 
Children readily learned to add and subtract with the blocks: The collect- 
ible multiunits presented by the blocks suggested combining like multiunits 
and trading. What took time was associating multiunit quantities and En- 
glish names to written marks and to addition and subtraction with written 
marks. 

It may be more difficult for children to make the links between collected 
multiunits and written marks procedures after they have highly automatic 
written procedures not connected to multiunit quantities. Although base- 
ten block instruction can help older children correct their errors (Resnick, 
1983), it does not always do so (Resnick & Omanson, 1987). Hiebert and 
Wearne (1987) also reported that for decimal fractions the blocks were less 
effective when used remedially to correct already present errors and miscon- 
ceptions than when they were used for the initial learning-teaching experi- 
ence. However, both these remedial uses were of short duration, so some 
children may just not have had sufficient time to construct collected mul- 
tiunit quantities and connect them to written marks procedures. 

Many different classroom organizations can support children's construc- 
tion of multiunit conceptual structures, and many different addition and 
subtraction procedures can be discovered or demonstrated. Teachers can 
lead children to particular procedures, or children can invent their own pro- 
cedures. The classroom organization used by teachers in the Fuson block 
studies varied. Some teachers used one set of blocks with the whole class- 
room at the same time. Others used one set with one small group at a time 
while other groups worked on other kinds of problems. Some teachers had 
many small groups working simultaneously, each with their own set of 
blocks. Teachers led children to particular multiunit procedures in these 
studies; in research just completed, however, children used the learning- 
teaching setting in Figure 1 to invent their own procedures. Discussion of 
advantages and disadvantages of various classroom organizations and of 
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various multiunit procedures is beyond the scope of this article (see Fuson 
& Burghardt, 1990a). 

Use of an embodiment that displays collectible multiunits to support the 
construction of conceptual understanding of a written marks procedure ex- 
emplifies what VanLehn (1986) called "learning by analogy," Resnick 
(1982, 1983) termed "relating semantics and syntax," and Schoenfeld 
(1986) discussed as making an abstraction between a reference domain (the 
blocks) and a symbol system (the written marks). All these distinctions can 
be elucidated by understanding the differences among the English words, 
quantitative multiunit conceptual structures, and the written marks, be- 
cause it is these differences that lead to the relationships specified in Figure 
1. For learning by analogy to occur, all the relationships in Figure 1 need to 
be constructed. These differences are the source of what Schoenfeld, fol- 
lowing a personal communication with J. S. Brown in 1986, discussed as a 
breakdown of the isomorphism between the blocks and the marks. As dis- 
cussed earlier and portrayed in Figure 1, however, the natural isomorphism 
is not between the blocks and the marks: It is between the English words 
and the blocks. The words and the blocks can provide conceptual structures 
that can give meanings to the marks (via the relationships in Figure 1) and 
can then direct the multidigit addition and subtraction marks procedures. 
Resnick's (1982, 1983) discussion of the importance of relating semantics 
(conceptual understanding) and syntax (the written marks procedure) re- 
flects the same viewpoint that emerged in the late 1960s in my own work 
with the base-ten blocks and is portrayed in the relationships in Figure 1: 
Resnick's semantics is the left column and the syntax is the right column. 
Although the distinction is crucial, the particular words chosen by Resnick 
to describe the distinction seem misleading. In most natural languages, the 
syntax is arbitrary and is generally unrelated to the semantics. Rarely if ever 
can the syntax be reliably induced from the semantics of the language. It is 
this inductive relationship, however, that is the whole point of Figure 1 and 
of the instructional approach based on the relationships portrayed in Figure 
1. Written marks procedures are fully derivable from and explainable by 
the multiunit-quantities structure. Thus, it seems preferable to drop the 
words semantics and syntax and stick with the actual underlying meanings 
of these terms: conceptual (or quantitative) understanding versus the writ- 
ten marks procedure. 

Resnick (1983) described three stages of decimal (multiunit number) 
knowledge: (a) unique partitioning of multidigit numbers (two-digit num- 
bers as a part-whole schema with the special restriction that one part is a 
multiple of ten), (b) multiple partitionings of multidigit numbers (using 
ten-for-one or one-for-ten trades to make an equivalent multiunit number), 
and (c) application of part-whole to written arithmetic (carrying out the 
trades in written marks problems). Knowledge in the first stage is organized 
into nodes related to each mark's position. Aspects of the visual-layout, 
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multiunit-names, and multiunit-quantities (as base-ten blocks but not as 
conceptual structures) conceptual structures, as well as knowledge of se- 
quence multiunits as lists of counting by ten, hundred, and thousand ap- 
pear in these nodes. The second and third stages involve aspects of the 
regular ten-for-one and one-for-ten trades conceptual structures. The dis- 
cussion of these three stages includes many important aspects of multiunit 
numbers. However, the node structure does not permit relationships to be 
portrayed between elements at different nodes (as Table 2 does), and the 
differences between English words and written marks are not discussed. 
The emphasis on a multiunit number as a part-whole schema (albeit a spe- 
cial one) also seems a bit misplaced. The term part-whole implies that the 
parts are all the same as each other (ruling out, or at the least not convey- 
ing, the possibility of different kinds of multiunits), and it emphasizes that 
the whole multiunit number is made up of its parts (the easy aspect of large 
whole numbers) while omitting any reference to the nature of these parts 
(the difficult and central aspect of large whole numbers in any language 
and in any written marks). The multiunits language conveys both these as- 
pects while being explicit about the nature of the parts of which a large 
whole number is composed. 

Detrimental Characteristics of Current Textbook Treatment 
of Multiunit Topics 

Several characteristics of current-textbook grade placements and treatment 
of multidigit addition and subtraction topics in the United States interfere 
with rather than support children's construction of linked multiunit con- 
ceptual structures. These are discussed in Fuson et al. (1988) and in Fuson 
(1990, in press) but are described briefly here to indicate changes required 
for classrooms that support such construction. Experiences with multidigit 
number words and number marks and with multiunit addition and subtrac- 
tion are distributed across four and, sometimes, even five grades (Fuson et 
al., 1988). Children work many two-digit addition and subtraction prob- 
lems with no trading in first grade (e.g., 23 + 45); two-digit problems re- 
quiring trading are not introduced until second grade-8 months to 1 year 
later (Fuson, in press). Three-digit problems in several text series are not 
given until third grade, four-digit problems occur first in either third or 
fourth grade, and larger problems usually appear in fourth or later grades. 
This contrasts with practice in the Soviet Union, Japan, Taiwan, and Main- 
land China in which problems up through six places appear in the third- 
grade text. In U.S. texts, particular subtypes of addition and subtraction 
problems are chunked rather than intermixed: Problems with a trade from 
ones to tens precede those with a trade from the tens to hundreds, which 
precede those with both of these trades. This practice increases the number 
and kinds of errors children make, for they invent rules that work in re- 
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stricted situations but create errors when used with unfamiliar problem 
types (see the discussion by VanLehn, 1986). This piecemeal introduction 
of multidigit addition and subtraction over a long period of time interferes 
with the reflective abstraction of the common features of the procedures 
across different positions and conveys to children the mistaken idea that 
there are many different procedures used for different types of problems. 

The prolonged focus of multiunit work only on two-digit numbers and 
especially the initial restriction to two-digit problems with no trading (and 
thus no necessary opportunity to see that the second position is a ten) mean 
that children must face all the consequences of the English irregularities for 
two-digit words for a prolonged period without the linguistic support of the 
regular named English hundreds and thousands and without seeing ten-for- 
one trades that could help them construct multiunits of ten. This effort to 
simplify children's learning by restricting their experience to two-digit num- 
bers not only underestimates their abilities but also makes it difficult for 
them to construct adequate conceptual structures. The push of children in 
CGIP classrooms to pose many problems to themselves with three-digit and 
four-digit numbers suggests that such problems can be highly motivational 
as well as provide support for regular named-value multiunits of hundreds 
and thousands (Jenkins, 1989). 

There is in textbooks a muddled and reversed order of using multiunit 
and unitary conceptual structures for two-digit marks, sums, and differ- 
ences. Two-digit written marks are initially related to multiunit tens and 
ones and not to unitary patterns in counting words (which all children expe- 
rience first). Two-digit sums and differences without trading precede single- 
digit sums and differences to 18 (e.g., problems such as 41 + 57 precede 
problems such as 8 + 8). The former are treated as multiunits of tens and 
ones, but the latter are treated as unitary numbers. In most texts, there is 
little or no attempt to show single-digit sums or differences greater than ten 
in ways that are structured around ten. Thus, children are expected to con- 
struct multiunits of ten and one early in first grade and to use these to add 
and subtract two-digit numbers before they have even had any experience 
with unitary addition and subtraction of smaller unitary single-digit num- 
bers that sum only to 18. They are expected to see several tens in a two-digit 
number such as 47 before they see one ten in 17. 

Finally, in textbooks, rote rules are stated with the very first multiunit 
addition and subtraction problems, and inadequate support is provided for 
constructing collected multiunits or for linking these to written marks or 
written marks procedures. Pictures of base-ten blocks may be given for one 
or several pages, but these are discontinued far too rapidly for most chil- 
dren to construct conceptual collected multiunits. Frequently, pages show- 
ing blocks are messy and busy, and the links between the marks and the 
blocks are not clear. Finally, it is more difficult to show the steps involved 
in addition and subtraction with the blocks in a series of pictures than it is 
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to use actual blocks in real time in the classroom. Few texts successfully 
overcome this problem. 

The conceptual structures required for understanding addition and sub- 
traction of multiunit numbers suggest different characteristics of topic or- 
der and grade placement. These characteristics have been discussed in 
earlier sections and in Fuson (1990). These proposed new characteristics 
are: 

1. Reading and writing two-digit marks are initially related to unitary 
sequence/counting structures and only later are related to multiunit 
conceptual structures. 

2. 	Addition and subtraction of all single-digit numbers precede all mul- 
tiunit addition and subtraction. 

3.  	Understanding of place value is multifaceted and prolonged and ac- 
companies and follows understanding of multiunit addition and 
subtraction. 

4. 	 Multiunit addition and subtraction can be presented all at once 
whenever children are ready to construct multiunit conceptual struc- 
tures (problems with and without trades are presented from the be- 
ginning, and all possible combinations of trades are done from the 
beginning). 

5. 	 Multiunit addition and subtraction procedures arise from multiunit 
conceptual structures, and adequate support is provided for con- 
structing such conceptual structures. 

Three Alternative Routes to Using Multiunit Conceptual 
Structures in Multidigit Addition and Subtraction 

Unitary single-digit and sequence multiunit solution procedures. This 
alternative was discussed in an earlier section. Children invent the usual 
unitary solution procedures to solve single-digit sums and differences and 
then extend their unitary-sequence counting procedures to multiunit-
sequence counting of tens and ones. Multiunit-sequence counting can also 
be extended to hundreds and to thousands. Difficulties with this approach 
are that the multiunit-sequence counting procedures even for two-digit 
numbers are difficult for many children to learn, and those for three-digits 
are even more difficult. Such learning typically takes until third or even 
fourth grade, especially the subtraction counting-down sequence procedures 
that seem to be more difficult than addition procedures. 

Unitary single-digit and collected multiunit solution procedures. This 
is the alternative used in the Fuson block studies. Children were first helped 
through their usual unitary solution procedures for single-digit numbers to 
unitary counting on for addition and counting up for subtraction (Fuson & 
Secada, 1986; Fuson & Willis, 1988). Children then engaged in activities fo- 
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cused on constructing the links among the additive multiunit conceptual 
structures, and they concentrated especially on multiunit addition and sub- 
traction. This approach required that children shift from using a unitary 
conceptual structure for finding single-digit sums or differences to using a 
multiunit conceptual structure to carry out trading. Some children demon- 
strated this shift in conceptions by using an extra step in addition. They 
would find a two-digit sum by counting on (e.g., 7 + 5 = "seven, eight, 
nine, ten, eleven, twelve"), write the two-digit marks for the English word 
twelve by using a rote unitary counting association (write 12 for twelve), 
and then shift to a collected multiunit meaning for these written marks to 
see them as 1 ten and 2 ones. This multiunit meaning told them what to 
trade (put the 1 ten with the tens and write the 2 ones in the ones position). 
These children had available the multiunit meaning of 12, but they initially 
needed the visual support of the written 12 to generate this meaning. They 
clearly were using a unitary conception to find the sum "twelve"; otherwise 
the multiunit meaning would have been directly available from the word 
twelve, and the written step out at the side would have been unnecessary. 
Eventually, the multiunit meaning became attached more easily to the word 
twelve for many children, and they abandoned the extra writing step. Un- 
less they also shifted to a new multiunit method of finding single-digit sums 
or differences, however, they still needed to shift from a unitary to a mul- 
tiunit conception. To avoid this conceptual shifting for each position in 
subtraction, children were shown a procedure in which all trading was done 
first (each position was checked to see if trading was necessary and trading 
was done if required), and then all positions were subtracted. Thus, mul- 
tiunit quantities conceptions could be used for trading, and then unitary 
conceptions could be used for all the subtracting. 

Children can learn to carry out the unitary-to-multiunit shifts fairly 
readily, and this approach can be quite successful (Fuson, 1986; Fuson & 
Briars, 1990). Second graders of all achievement levels did learn multiunit 
addition and subtraction of at least four-digit numbers, and most could ex- 
plain trading using multiunit quantities in both addition and subtraction. 
For addition, an example of such an explanation is: 

That's eight tens and eight tens is sixteen tens and ten of those tens 
make one hundred and then six tens left. So trade the hundred to the 
hundreds place and write the six tens here. It's one hundred and six 
tens. 

This second alternative of adding and subtracting collected multiunits for 
three- or four-digit numbers seems to be easier than the first alternative of 
doing so with multiunit sequence procedures, because children do not have 
to learn the difficult sequence-counting skills counting by tens, hundreds, 
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and thousands and coordinate these with written numerals and multiunit- 
quantities conceptual structures. 

Collected multiunit single-digit and multidigit solution pro- 
cedures. Asian children learn multiunit addition and subtraction proce- 
dures for adding and subtracting single-digit numbers with sums between 
eleven and eighteen (these procedures were described in an earlier section); 
the named-ten in the language supports these procedures structured around 
ten. Because the language and these procedures turn the single-digit sum 
into multiunits (a ten and some ones), trading is not necessary. Trading 
(changing ten ones into one ten or ten tens into one hundred) is only re- 
quired for unitary collections that exceed ten. As with the unitary sums, 
children can find multiunit single-digit sums within the correct value/posi- 
tion by using multiunit quantities conceptual structures or can ignore the 
value/position and treat the single digits as if they were ones. Thus, Korean 
children explaining addition of tens used two different approaches (Fuson 
& Kwon, 1990b). Some said "eight ten plus eight ten is one hundred six ten, 
and I put the one hundred over here in the hundred place," whereas others 
said "eight plus eight is ten six, and I put the ten over here (pointing to the 
hundred position but not naming it)." More of the second than of the third 
graders made the latter kind of explanation, without ever indicating that 
they realized the 1 was also a hundred, so, as with U.S. children, it may take 
some children some time to relate the single-digit-marks addition to the 
multiunits in each position. Sums or differences over ten can be found for 
any value/position by using generalizations of the ten-structured methods: 
"eight ten plus six ten is one hundred (putting two ten from the six ten with 
the eight ten) and four ten (leftover from the six ten)." 

These Asian solutions, thus, suggest a third alternative for English- 
speaking U.S. children: Single-digit solution methods structured around ten 
(adding up over ten, subtracting down over ten, and subtracting from ten) 
could be supported with materials showing collectible multiunits. These 
methods could be used for single-digit sums and differences (e.g., 8 + 7) 
and for such sums and differences in two-digit addition and subtraction 
(28 + 37). Madell (1985) reported that U.S. children allowed to invent two- 
digit addition and subtraction procedures using base-ten blocks eventually 
invent exactly these ten-structured multiunit procedures using the blocks. In 
subtracting 53 - 24, for example, they subtract from ten by taking the 4 
from one of the tens, leaving six, which is added to the original 3, making 
nine ones, or they subtract down over ten by taking three of the 4 ones away 
from the 3 ones and then taking the remaining one from a ten, leaving nine. 
Collectible multiunits of tens, hundreds, and thousands could support use 
of these ten-structured addition and subtraction methods within those val- 
ues, as in the Korean example given earlier. 

How easy this approach would be to implement is not clear. Baroody 
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(1990) suggested that multiunit structures (tens and ones) be taught as early 
as kindergarten and used for single-digit sums and differences. It is not 
clear whether children need to go through the usual developmental se- 
quence of unitary solution procedures before reaching multiunit ten-struc- 
tured conceptions. If they do, it is unlikely that children could learn 
ten-structured methods in kindergarten or early first grade. U.S. children 
might find the support of regular named tens to be of considerable help in 
this approach, and using English forms of Chinese words for all two-digit 
numbers might enable children to construct multiunits of ten and one con- 
siderably more easily and earlier than they do at present. Using fingers in 
the Korean way so that fingers can be reused for numbers over ten may also 
prove to be helpful to U.S. children in understanding ten-structured meth- 
ods of single-digit addition and subtraction (see Fuson & Kwon, 1990a, in 
press). Madell (1985) reported that U.S. children used unitary conceptual 
structures with the base-ten blocks for a long time (sometimes 2 years) be- 
fore inventing the Asian single-digit methods structured around ten. Per- 
haps these other supports, or using blocks for four-digit instead of just 
two-digit numbers, or explicitly discussing ten-structured methods, would 
enable children to understand these methods more easily. 

CONCLUSION 

It is clear that U.S. elementary school mathematics classrooms are failing 
badly in their current attempts to help children construct conceptual struc- 
tures for multiunit whole numbers. This failure seems largely attributable 
to inadequate support within the classroom for children's construction of 
linked multiunit conceptual structures and for the use of these conceptual 
structures in multiunit addition and subtraction. The devastating effects of 
this inadequate support are exacerbated by two factors that interfere with 
U.S. children's ability to generalize the features of the English words, the 
written marks, and multiunit addition and subtraction procedures across 
several places: (a) the prolonged and piecemeal introduction of multiunit 
addition and subtraction over several grades and (b) the irregularities in the 
English system of number words for two-digit numbers that induce children 
to use unitary and CSD conceptual structures rather than multiunit concep- 
tual structures for multidigit numbers. 

Cross-cultural research indicates that the U.S. grade placement of mul- 
tiunit addition and subtraction topics is later than that of several other na- 
tions and that U.S. children's comprehension of these topics lags behind 
that of children in these other countries. Thus, the failures in these areas are 
not due to U.S. expectations that are beyond the developmental capabilities 
of children. Some research indicates that, with proper classroom support 
for constructing multiunit conceptual structures, U.S. second graders can 
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understand multiunit addition and subtraction and calculate accurately 
even for large multiunit problems. This support requires a learning and 
teaching setting that facilitates learning the named-value features of the En- 
glish number words and the unnamed positional features of the written 
multidigit marks by constructing and linking six additive multiunit concep- 
tual structures-visual layout, positions ordered in increasing value from 
the right, multiunit names, words ordered in decreasing value as they are 
said, multiunit quantities, and regular ten-for-one and one-for-ten trades- 
and by using these conceptual structures in multiunit addition and subtrac- 
tion. Using materials that display physical collectible multiunits, from 
which children can construct conceptual collected multiunits for the mul- 
tiunit-quantities conceptual structure, and linking collectible multiunits to 
written marks and English words play an especially crucial role in meaning- 
ful multiunit addition and subtraction and place value. 
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