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CHAPTER 9

THE COMMON CORE
MATHEMATICS STANDARDS
AS SUPPORTS FOR LEARNING
AND TEACHING EARLY AND
ELEMENTARY MATHEMATICS

Karen C. Fuson
Northwestern University

The Clements and Sarama chapter is an excellent research summary about
effective mathematics learning and teaching in preschool and the early ele-
mentary grades. This brief commentary will build on thatsummary to iden-
tify some ways in which the new Common Core Mathematics Standards can
improve teaching and learning. Because standards do not describe learn-
ing activities, they do not describe a learning trajectory in the Clements and
Sarama sense, because their term includes learning activities. Therefore,
this commentary uses the term learning path to mean the experiential pro-
gression of knowledge built by a coherent appropriate program of learning
activities.
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As was emphasized in the research summary, and in all recent national
reports, understanding and fluency are both crucial foci of teaching. As-
pects of both understanding and fluency are mentioned specifically in the
standards. Most importantly, the standards are focused and coherent across
grades, and so there is time for teachers to concentrate on both under
standing and fluency. At each grade level, the standards focus on fewer
standards than in most previous state standards, and these standards build
on each other across grades. Therefore, teachers can have enough time for
grade-level mastery of core topics, and teachers of the next grade can con-
centrate on the goals for that grade level, as is common in other countries.
Reducing the present pattern of the huge waste of time now spent in ear-
lier grade-level reviewing (over 40% by some estimates) and the confusion
about exactly which grade-level teacher is responsible for what topics will be
a major positive result from the standards.

Reasoning is explicitly mentioned in the standards and such reasoning
is supported by visual/conceptual aspects of the standards; therefore, age-
appropriate learning paths exist. The research reviewed in the Clements
and Sarama chapter indicates that it is crucial to base math teaching and
learning (and math programs prepared by publishers) on learning paths
(trajectories). These learning paths are particularly visible in the Common
Core Standards for two of the most crucial domains for early learning: op-
erations and algebraic thinking (OA) and number base-ten (NBT).

The OA operations and algebraic thinking standards lay out an ambi-
tious learning path, with word problem types as the basis for understanding
of operations (+ —x +). These main types of word problems (see Tables 1
and 2 on pages 88 and 89 of the Standards document) are situations in the
real world that give rise to addition, subtraction, multiplication, and divi-
sion. There is a huge amount of worldwide research literature on learning
paths within these word problem types and on methods that students use
to represent and solve such problems. The standards reflect this research
literature for grades K, 1, and 2. They identify grade-appropriate levels at
which students work with the various problem types and with unknowns
for all three of the quantities. The standards appropriately specify that
students use drawn models and equations with a symbol for the unknown
number to represent the problem (situation equations such as 5 +[ | = 8).
Thus, students will have the crucial experience with algebraic problems
from grade 1 on. Algebraic problems are those where the situation equa-
tion, such as[_| + 4 =9, is not the same as the solution equation, 4 +[_]=9 or
9 — 4=[]. Importantly, students also work in kindergarten with forms of
equations with one number on the left (e.g,, 5=2+ 3 and 5 =4+ 1) as they
decompose a given number (here, 5) and record each decomposition by a
drawing or equation. Experience with these various forms of equations can
eliminate the usual difficulty that U.S. students have with equations in alge-
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bra, where their limited experience with one form of equation leads them
to expect only equations with one number on the right.

The operations and algebraic thinking (OA) standards outline a learn-
ing path of three levels of addition/subtraction solution methods that stu-
dents use at grades K, 1, and 2: (1) direct model, (2) count-on, and (3)
make-a-ten and other derived-fact methods. These levels provide a bridge
between algebraic problem solving and NBT because these strategies are
used in multidigit adding and subtracting also. This learning path comes
right from research. Prerequisites for more-advanced strategies are identi-
fied as standards in kindergarten so that students in grades 1 and 2 can
learn these strategies. Furthermore, the standards specify that subtraction
is to be understood as an unknown-addend problem, and division as an
unknown-factor problem. These emphasize the inverse relationships be-
tween addition and subtraction and between multiplication and division.
This perspective enables programs and teachers to emphasize solving sub-
traction by forward methods such as counting-on to find the unknown ad-
dend; for example, 14 — 8 =[] is thought of as 8 +[ 1 = 14 and can be found
by keeping track of how many counted-on from 8 (o reach 14: (take away)
8, then 9, 10, 11, 12, 13, 14, so six more; 0 make a 10: find 8 +[ =14
s 8+92+4=10+4 and 2 +4 =6, so the unknown addend is 6. Forward
counting methods are much easier and less error prone for children than
are methods involving counting down.

The number and operations in NBT standards outline a learning path
for multidigit computation based on research. Core components of this
learning path are that students are

¢ to use concrete models or drawings and strategies based on place
value and properties of operations;

o 1o relate the strategy to a written method and explain the reasoning
used (explanations may be supported by drawings or objecis); and

e to develop, discuss, and use efficient, accurate, and generalizable
methods including the standard algorithm.

Thus, students simultaneously build and use understanding of place
value concepts of ones, tens, and hundreds in adding and subtracting num-
bers that are composed of these units.

This learning path adjusts the impression given by the research sum-
marized in Clements and Sarama about student invention of strategies ver-
sus teaching the standard algorithm first, Many of these studies present
Clements and Sarama’s “false dichotomy” in two ways. First, in the invent
situations, students were to invent, but also they were to make sense of and
discuss and explain their methods. In the teach algorithms first conditions,
sense making was not necessarily a priority or even supported. Also, there
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are a limited number of methods for solving any problem and so most
students in a given classroom do not actually invent a new method. They
see it used and explained by a classmate. In a classroom where invention
is stressed, students rather than the teacher model and explain methods.
So what is crucial is making sense of methods and providing supports for
such sense making, such as manipulatives or drawings that show tens and
ones, and requiring and supporting discussion of methods. The standards
require such sense making.

Second, many studies or programs calling for students to invent methods
have an extended period of invention without much explicit teacher or
fellow-student intervention (teaching). Teaching here is viewed as neces-
sarily interfering with sense making by students (for more about this issue,
see Fuson, 2009). Such a view can result in extended periods in which some
or even many students use only primitive methods, even counting all of
the objects for a 2-digit problem as late as third grade. This is detrimental
o less-advanced students and is unnecessary. There is a middle view called
“learning-path teaching,” which emphasizes sense-making that is not radi-
tional rote teaching and is not extended invention without help to move
students to more-advanced methods. Learning-path teaching stems from
major NRC reports (Donovan & Bransford, 2005; Kilpatrick, Swafford, &
Findell, 2001}, from the NCTM process standards {NCTM, 2000), and from
research on teaching in Japan and in this country {Fuson & Murata, 2007;
Murata & Fuson, 2006).

A summary of such teaching referring to aspects of these reports is given
in Table 9.1. The top of the table summarizes the classroom environment
supported by research that creates understanding. Details of ways to build
such a sense-making math talk environment are summarized in Fuson,
Atler, Roedel, & Zaccariello (2009). The Common Core Standards specify
mathematical practices that are similar to the NCTM process standards and
that are consistent with the learning-path teaching summarized in Table
0.1. The learning trajectory approach described in the Clements and Sara-
ma chapter and their instructional strategies based on their learning trajec-
tories are also consistent with this learning-path teaching.

TABLE 9.1 NRC Principles and NCTM Standards Summarizing the
Class Learning Path Model

OVERALL: Create the year-long nurturing meaning-making math-talk community.

The Teacher orchestrates coltaborative instructional conversations focused on the
mathematical thinking of classroom members (Flow Students Learn. Principle I and NCTM
Process Stawdeards: Problem Solving, Reasoning & Proof, Commuenication). Students and the
Teacher use seven responsive means of assistance that facilitate learning and waching
by all {scveral may he used together): engaging and invobving, managing, wiud coaching,
which involves the live subcategories of modeling, cognitive restructuring and clarilying,
instructing/explaining, questioning, and feedback,
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TABLE 9.1 {continued} NRC Principles and NCTM Standards Summa-
rizing the Class Learning Path Model

FOR EACH MATH TOPIC: Use inguiry learpingpath teaching and learning.

The Teacher supports the meaning-making of all classroom members by using and assisting
stuclents to use and relate (interform) coherent mathematical sitmations, pedagogical
Torms, and cultiral mathematical forms (NCTM Process Siandards; Connections &
Refirasestation) and uscs four class learning zone leaching phases within a coherent in<lepth
sequence of problems and activities to help students move through their own learning
paths within the class learning zone:

Phase 1. Guided Introducing: Supported by the coherent forms, the Teacher elicits and
the class works with understandings that students bring to a tople (How Studenls Learn
Principle I).

a. Teacher and students value and discuss student ideas and methods [*individual internal
forms (HF%) in action”].

b. Teacher identifics dillerent levels of sobition methods used by students and typical
errors and ensures that these ace seen and discussed by the class.

Phase 2. Learning Unfolding (Major Meaning-Making Phase}: The Teacher helps students
form emurgent networks of forms-in-action {(flow Skudents Learn Principle 2).

a. Lxplanations of methods and of mathematical issues conlinue W use math drawings and
other pedagogical supporis o stimulate correct relating (interforming) of the forms.

h. Teacher focuses on or introduces mathematically desirable and accessible method(s).

¢. Erroncous methods are analyzed and repaired with explanations.

. Advantages and disadvaniages of various methods including the current common
method are discussed so that central mathematical aspects ol the 1opic hecome
explicit.

Phase 3. Kneading Knowledge: The Teacher helps students gain {luency with desired
method(s); students may choaose a method; fluency includes heing able to explain the
method; some rellection and explaining still continue (kneading the individual internal
[orms); students stop making math drawings when they do not nced them (Adding It Up:
Fhueney & Undersionding).

Phase 4. Maintaining Fluency and Relating to Later Topics: The Teacher assists
remembering hy giving occasional problems and initiates and orchestrates instructional
discussions o assist re-lorming HFs o support (form-under) and stimulate new [IF “nets
for action” for related topics,

RESULT: Together, these achicve the overall high-level goal for all: Build resourceful sell-
regulating problem solvers (How Studenty Learn Principle 3) by continually intertwining
the 5 strands o mathematical proficiency: conceptual understanding, procedural fluency,
strategic competenee, adaptive reasoning, productive dispositon (Adding 11 L),

Note: This is a later version of the able in Fuson and Murata {2007). This table appears
in the work of Fuson, Muraiz, and Abrabamson (2011}, in which we sought to bring
together perspectives on understanding and [fucncy and provide language to do so. We
characterized Piagets and Vygotsky's conceplral activity as involving three types of exicrnal
math Torms: situational, pedagogical, and colinral math forms. We specified that cach learner
continually losms and reforms individunel indernal forms ( I3y thal are inlerpretations of the
externat forms. This paratlel use ol the word forms links the external and internal forms bt
emphasizes that cach individual internal form may vary [rom the external form because the
internal form is an intecpretation. Doing math is using “I1Fs in action” o form aclions with

external furms.
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The middle part specifying the four phases of inquiry learning-path teach-
ing is the balanced antidote to the nonproductive extremes of “invent for a
long time” and traditional rote teaching. For any topic, one begins by elicit
ing student thinking. This might be brief for a short topic. For a major topic
like single-digit or multidigit addition or subtraction, students would initially
develop and use or choose their own methods in a classroom environment
where they already have prerequisite knowledge and have visual supports for
discussing their thinking. But soon {within a couple of days so as not to let
less advanced students flounder for days) research-based mathermnatically de-
sirable and accessible methods are introduced to the class if such methods
have not arisen from students. These methods have been found by classroom
research to be easily understood by students (more easily understood than
the current common ways of writing a standard algorithm), to generalize to
larger numbers readily, and to make salient important mathematical issues
{e.g., moving from left to right vs. right to left or using expanded notation)
that are fruitful for classroom discussion; for more details, see Fuson & Mu-
rata (2007}, Kilpatrick et al. (2001), and NCTM (2011).

The Common Core Standards recognize that the methods invented by
students often are generalized from counting methods and work for num-
bers within 100. Some methods, however, become more difficult for totals
between 101 and 1000 (see details in NCTM, 2011). Therefore, the stan-
dards require students in grade 2 to add and subtract totals between 101
and 1000 (called “within 1000” in the Common Core Standards) in or-
der to experience and generalize methods to larger numbers. Many other
countries add and subtract such numbers at grade two for similar reasons.

Because the term “standard algorithm” has been such a flashpoint for
the “math wars,” I also wish to reiterate the crucial point made in the NRC
report, “Adding It Up” (Kilpatrick et al., 2001) and in the Clements and
Sarama research summary indicating that there is no single recognized
“standard algorithm” for any operation. Many different forms have been
used in this country and are currently being used around the world. The
term “the standard algorithm” actually refers to the major mathematical
features of the process and not to the details of how these are written. For
example, multidigit addition and subtraction have two components: (a)
adding or subtracting like units; and (b) when needed, group ten of a unit
to make one of the next-left unit or ungroup one unit to make ten of the
nextright unit. There are maore and less accessible ways to write these steps,
and students should see and be able to use more accessible versions. These
are often minor variations that prodiice major decreases in errors and in-
creases in understanding. Figure 7.3 in the Clements and Sarama chapter
shows a subtraction standard algorithm that is much easier for students
because they concentrate on any needed ungrouping first and then do all
of the subtracting. Figure 9.1 here shows an easier addition standard algo-
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456 456 456 456
+167 +167 +1467 +167
e — — —_
3 23 623
Add 6 ones and Add 5 tens and Add 4 hundreds
7 ones, write 6 tens to make and 1 hundred
thirteen {one, ten, 11 tens, and 1 to make

three ones), with
the three in the
ones place and
the 1 ten under
the tens column,

more ten makes
12 tens. Write

12 tens, with the
2 tens in the tens
column and the

5 hundreds; add
1 more hundred
to make

6 hundreds.

10 tens (100}
under the
hundreds
column.

Figure 9.1 A mathematically desirable and accessible addition algorithm.

rithm. Writing the new tens or hundreds below in the nexeleft place makes
it easier to add the numbers in those places (you can just add the two num-
bers you see and increase that total by one}, shows the 2-digit totals clearly
because their numbers are close to each other (13 ones and 12 tens}, and
allows students to write a teen number in their usual way (13 as write 1
then 3, not write the 3 and carry the 1). Both figures show how drawings of
hundreds, tens, and ones can support the BAMT (break apart to make ten}
methods by grouping numbers within 5-groups that show how much more
to make a ten.

Because so much of the Common Core Standards reflect learning pro-
gressions and specify general kinds of visual supports for meaning making,
these progressions and visual supports will need to be in standards-based
math programs. Therefore, professional development (PD) can be more
successful because more programs can be used as the basis of PD because
more programs will contain many of the features described for successful
PD at the end of the Clements and Sarama chapter.

The final two points concern. the nature of the crucial bases for sense
making in the classroom, visual teaching/learning supports. One important
function of national reports and of the Common Core Standards has been
to stimulate the use of such visual teaching/learning supports connected to
mathematical notation and reasoning because so much rescarch supports
such use. However, sometimes crucial supports do not even exist. In such
cases, reports and the standards can identify the need for them. Most of
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the Hlustrations given in the geometry learning trajectory in the Clements
and Sarama chapter are not about the central 2-D shapes used in geometry
(e.g., rightangled shapes such as squares, rectangles, and right triangles,
which form the basis for conceptualizing area as the number of contigu-
ous squares and for finding the formulas for the area of most shapes used
widely in geometry). Only twa illustrations used at ages 7 and 8 use squares,
rectangles, and right triangles. Most earlier illustrations used shapes made
from equilateral triangles. This is because physical sets of such shapes (of-
ten called “pattern blocks”) have been available and widely used for a long
time. It was the National Research Council’s report on early childhood
math, Mathematics Learning in Early Childhood: Paths Toward Excellence and
Equity (2009), that identified the need for such materials for preschool and
carly elementary students. Students can engage in all of the levels in the
geometry progression with a right-angled set of pattern blocks made from a
few key squares, rectangles, and right triangles all based on a square of one
inch. This enables them to build important informal knowledge leading to
many of the Common Core geometry and measure standards.

Finally, teaching/learning supports and solution strategies interact with
the language the child is speaking. The BAMT method shown in Clements
and Sarama’s Figure 7.1 is an excellent general method that can be viewed
{(and is viewed in East Asian countries) as the first step in multidigit adding
and subtracting (you are already grouping or ungrouping). However, this
method is more difficult in English than in East Asian languages, where
teen words are said in a regular form such as fen fwo for 12. When 8 + 6 is
recomposed to be 10 + 4, that is said as ten four in regular East Asian words,
and so the conceptual step from fen and four to fen four is small (but not
nonexistent; see Ho and Fuson, 1998). In English, children must take a
larger step from fen and four to fourteen or, even more difficult, fen and fwo
to fwelve. So they must become fluent in all of the different numerical ex-
amples for teen numbers; the importance of this conceptual work is recog-
nized in the kindergarten standards.

Likewise, the empty number line shown in Clement and Sarama’s Fig-
ure 7.2 is used in The Netherlands with a language that says all 2-digit words
with a reversal of the tens and ones. The example of 85 ~ 68 shown there
would be said by the children as five and eighty minus eight and sixty. There-
fore, a counting method and visual counting support that keep together
the two-digit number is quite useful in dealing with the reversals between
the written and spoken 2-digit numbers. Such methods are less necessary in
English, where children can use counting-on methods by using math draw-
ings of tens and ones to keep track of how many are counted on {NCTM,
2011; Fuson, Smith, & Lo Cicero, 1997). Of course, forward methods can
also be supported by any visual supports: Many children find it easier to find
85 — 68 =[] by adding on ones and tens to 68 to make 85 (68 +[ ] = 85)
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using the concept of subtraction as finding the unknown addend, as de-
scribed in the Common Core Standards.

Because the Clements and Sarama chapter focuses on preschool and ear-
ly elementary mathematics, this commentary closes with a reminder about
the crucial importance of the research summaries and recommendations
of the NRC report on early childhood math of 2009 for creating a national
environment of learning in the preschool years so that all kindergarten
children can meet the Common Core Standards. Teaching approaches that
implement these NRC recommendations are given in the books for teach-
ers published by the National Council of Teachers of Mathematics (2010a,
2010b, 2009, 2011). Use of such research-based approaches in educational
and care centers can help close the equity gap and can help all children
achieve at a high level in early and elementary mathematics.
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