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Abstract Many different methods of multidigit
computation have been used historically and are now used
around the world, but the context in which multidigit
computation now occurs has changed. The worldwide
availability of electronic calculators has decreased the
need for complex computations. The emphasis now can be
on understanding methods as well as performing them.
This paper outlines a research program conducted over
thirty years to find and test multidigit computation
methods that are mathematically desirable and that many
kinds of students and teachers can understand and explain.
A nurturing Math Talk classroom environment, in which
students made and explained math drawings supported
sense-making by students and teachers. Powerful and
simple math drawings were also developed and assessed.
The methods and math drawings identified by this
research for multidigit adding, subtracting, multiplying,
and dividing are described. Examples are given of student
explanations with the drawings. The criteria for deciding
which methods are mathematically desirable are given,
and the methods are judged by these criteria. Some
methods that are common in various countries but that are
difficult and may stimulate errors are described so that
they might be replaced by the best methods identified by
this research. How these methods fit the math standards of
two different countries, the United States and China, is
described. Sense-making about and using the identified
best methods can reduce errors and engender
understanding.

Keywords Place Value, Multidigit Computation,
Multidigit Addition, Multidigit Subtraction, Multidigit
Multiplication, Multidigit Division, Meaningful
Computation, Standard Algorithms

1. Introduction
Many different methods of multidigit computation have

been used historically and are now used around the world
[1–7]. These methods vary in their complexity,
generalizability, and the ease with which they can be
understood and explained. For centuries the emphasis was
on rapid and accurate computation without any need to
understand the method being used. The widespread
availability of calculators in the past decades changed the
need for human calculators from just producing answers
to understanding a method so it might be modified if
needed in the future. There was also an increasing
emphasis around the world on students and teachers
understanding mathematics and on students inventing and
sharing their methods.
These changing contexts for computation led me to

these research questions:
1. Are there multidigit computation methods that are

mathematically desirable and accessible to many
kinds of students and teachers?

2. Can teachers understand and explain these methods?
3. Can students understand and explain these methods?

This paper addresses these questions by outlining the
steps taken to address these research questions and then
describing the methods identified by this process along
with complexities found for each method. The results
focus on two mathematically desirable and accessible
methods for each kind of multidigit computation (addition,
subtraction, multiplication, division). These methods are
contrasted with methods considered “the standard
algorithm” and taught in most textbooks in the United
States. Some common methods used in other countries are
identified and compared in this paper or discussed in
references. The results recommend particular methods for
inclusion in mathematics programs around the world and



The Best Multidigit Computation Methods: A Cross-cultural Cognitive, Empirical, and Mathematical Analysis1300

criteria for the selection of these methods.
Our theoretical framework uses both a Piagetian

constructivist model of learning and a Vygotskian
socio-cultural model of teaching [8,9]. From our Piagetian
perspective, we assume that students are continually
interpreting their classroom experiences using their own
conceptual structures as well as continually adapting their
conceptual structures to their on-going classroom
experiences. From our Vygotskian perspective, we assume
that a major goal of school mathematics teaching is to
assist learners in coming to understand and use cultural
mathematics tools. One powerful means of
teaching/learning assistance is math drawings, which are
semiotic tools that can support sense-making both
individually and in the classroom discourse about
mathematical thinking. Therefore, our teaching
approaches primarily used math drawings that teachers
and students could make and explain. A nurturing Math
Talk classroom environment supported sense-making by
students and teachers [9].

2. Materials and Methods
Thirty years of coordinated research efforts addressing

the above research questions are briefly overviewed here.
References allow readers to understand more details of
these efforts; many of these references are available here
[10]. The two multidigit methods for each operation
identified as worthy of inclusion in mathematics programs
around the world are described in the Results section
along with criteria for their choice and research-based
approaches to teaching these methods for understanding.
This allows the reader to focus there on the final results of
these decades of research and to relate these methods to
each other.

2.1. Data Collection Methods

Step 1: Gather and analyze multidigit computation
methods:
Multidigit computation methods were identified in the

following kinds of sources:
a. methods used around the world historically [7]
b. textbooks from African, Asian, European, and North

and South American countries;
c. research articles and summaries [1–6];
d. conversations with colleagues and students at

national and international conferences.

These methods were analyzed for their mathematical
similarities and differences. Attention was given to the
language spoken by students and how this language might
interact with the method. Methods that were
mathematically desirable and seemed accessible to
students were identified.
Step 2: Gather methods students invent and explain

in supportive meaning-making learning situations and
develop and assess teaching supports for computation
methods identified in Step 1 and/or invented by
students:
The author and Children’s Math Worlds Project

researchers carried out exploratory studies with small
groups of students and with whole classes in the United
States. Initial studies focused on multidigit addition and
subtraction. Six small groups of second graders used
base-ten blocks to model and solve 4-digit addition and
subtraction problems. Students had not yet learned any
methods for multidigit addition or subtraction in school.
Groups were videotaped, and the large pieces of paper on
which students recorded their written methods were
collected. These written methods recorded things students
did with the blocks on the large 3-row 4-column
place-value sheet. Seven correct addition methods and
sixteen correct subtraction methods were identified [11].
Several of these had advantages over the methods taught
in schools in the United States. Seven incorrect addition
methods and sixteen incorrect subtraction methods were
also identified. Some of these were corrected by the
students to form a correct method.
Teaching studies were then carried out in four urban

classrooms to teach the best addition and best subtraction
methods invented by students. In one first-grade and one
second-grade classroom students used base-ten blocks to
show steps in adding and subtracting and recorded
methods on big sheets of paper. In another first-grade and
another second-grade classroom students used a much less
expensive version: blocks cut from felt by parent
volunteers (thousands were 10 hundreds blocks clipped
together). Many students did learn the methods chosen as
the best of the invented methods. However, there were
two major problems in the whole-class situation. First,
students could not see the blocks when students explained
their methods so there were no visual quantity supports
for the written method being explained. Second, all of the
materials were lost over the summer in the large urban
school.
For these reasons we moved in the following year to

drawings students made for ones, tens, and hundreds. First
graders drew tens and ones and used these to show 2-digit
addition and subtraction problems [12,13]. Second graders
drew hundreds, tens, and ones to show 3-digit addition
and subtraction problems [14]. The author and project
staff observed and co-taught in these classrooms. Methods
invented by students were also recorded. A major focus in
these studies and in those in Step 3 was to identify how
students could learn to make place-value drawings
meaningfully and rapidly. Students drew columns of ten
dots and then drew a line through the dots to make a
ten-stick. Eventually the ten-sticks were called fast tens
and only the stick was drawn, though the ten dots could be
imagined and drawn as needed. The math drawings
students made supported explaining to the whole class,
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most students could carry out addition and subtraction
accurately, and many students could explain their method.
Performance was substantially higher than for students of
these teachers in earlier years.
The initial multidigit multiplication and division studies

were done later than those for addition and subtraction,
but they followed the same general approach of working
with small groups and with whole classes. This
computation was modeled by area drawings initially given
to and later made by teachers and students. An initial
phase of students inventing methods was not productive
because students used different kinds of non-ten
groupings for different problems and so did not develop
any general methods. We then wrote materials to support
teachers to connect area model drawings to written
multidigit methods using place values, and especially to a
method invented by urban fourth graders who wrote out
all four partial products with their factors and recorded the
largest first to make it easy to align subsequent smaller
partial products. Fourth graders learning with these
materials in one urban and one suburban classroom
outperformed fifth graders using a traditional curriculum
in the United States and were equivalent to Japanese and
Chinese fifth graders [15,16]. A subsequent study with
fifth graders identified difficulties students can have
differentiating arrays of dots from areas made from square
units especially if earlier grade levels used only arrays of
dots [17,18]. Therefore, for Step 3 below we developed a
coherent sequence of emphasizing and differentiating dot
arrays and areas with square units for single-digit
multiplication and used area models in Grades 4 and 5 to
support these more difficult concepts [19].
For division we used in two urban fifth grade

classrooms vertical area model drawings that paralleled an
accessible written division method in which students
could accumulate quotients (the number of divisors) out to
the right of the dividend [20,21]. This allowed students to
underestimate and still keep accumulating quotients.
Teachers reported that students were more accurate in
division than they had been with other approaches, but we
felt that this method allowed students to build answers too
slowly and did not relate sufficiently to their
representations for multiplication. Therefore, we moved in
Step 3 to using the same area model as for multidigit
multiplication and helped students to build up partial
quotients in the area model and record these in the written
division method. This method did allow students to
underestimate and keep adding partial quotients, but they
did this much less than they had done with the earlier
vertical model.
Step 3: Address the three research questions by

writing, assessing teachers teaching, and revising
written units focused on multidigit computation and
using large whiteboards with supports for student
drawings.

2.2. Participants

For multidigit addition and subtraction, participants
were Grade 1 through Grade 4 students in classrooms
participating in the Children’s Math Worlds research
project. We gathered data for three years from six
classrooms of students at Grades 1 and 2, with one
classroom at each grade level in each of three urban
schools. Classes ranged in size from 20 to 28. We
gathered data for three years from four classrooms of
students at Grades 3 and 4, with one classroom at each
grade level in one urban school and in one suburban
school with many immigrants. Classes ranged in size from
26 to 37. Across these classrooms a large minority of the
students were on free lunch (an index of low family
income). Close to half the students were from
Spanish-speaking backgrounds, and another third used a
variety of other languages at home. This diversity was
chosen to test the accessibility of our approaches to a
broad range of students and to ascertain what multidigit
computation methods students brought from their homes.
Teaching materials were in English, and the bilingual
teachers in the not-yet-English-fluent classrooms taught in
English supplemented as needed with Spanish or other
languages.
For multidigit multiplication and division, in each of

two urban schools we gathered data for two years from
two classrooms of students at Grade 4 and two classrooms
at Grade 5. Classes ranged in size from 28 to 38. The
backgrounds of students were similar to that of the
students described above.

2.3. Teachers and Teaching Materials

The author and research staff of the Children’s Math
Worlds research project wrote units on multidigit addition,
subtraction, multiplication, and division. Multidigit
addition and subtraction with regrouping were taught in
Grades 1 through 4, with totals increasing from 100 in
Grade 1 to 1000 in Grade 2 to 2000 in Grade 3 and to
1,000,000 in Grade 4. Multidigit multiplication and
division were taught in Grades 4 and 5, moving from
1x3-digit, 1x4-digit, and 2-digit x 2-digit in Grade 4 to
3-digit x 3-digit in Grade 5. The regular classroom
teachers taught these units with occasional teaching
support from research project staff if requested.
The author and project research staff observed

classrooms, took notes, interviewed students and teachers,
and collected quizzes and unit tests to analyze errors. The
author talked by phone with teachers to answer any
questions about the teaching and to discuss how the
student learning was going. A major focus was on
students making drawings for the computations, relating
their drawings to steps in their computations, and
explaining their written method. Materials were revised
each year in response to the teacher and student data to
improve learning and make the units easier to teach.
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All grade levels used special large (11 ¾ inches by 17
inches; 30 cm by 43 cm) student dry-erase boards with
grade-level learning supports to help students learn to
make multidigit drawings rapidly and meaningfully and to
have room to make math drawings and written methods.
The Grade 1 and Grade 2 dry-erase boards had two
adjacent 10 by 10 arrays of dots 1 centimeter apart.
Students drew down each column to make ten-sticks and
counted these ten-sticks by tens (10, 20, 30, etc.). They
drew a square around an array of ten ten-sticks to make a
hundred-box that could be seen as ten ten-sticks or as 100
dots. They soon began making sketches to show numbers
as composed of hundred-boxes, ten-sticks, and ones. The
Grade 3 dry-erase whiteboard had an array of 24 by 40
dots 1 cm apart to permit drawing hundred-boxes,
ten-sticks, and ones. To help guide discussion that
differentiated dot arrays from arrays of unit squares made
by joining adjacent dots, this board had small circles
between every group of five dots along one short side and
one adjacent long side. The other short and long side had
small + signs beside each row or column of five dots.
Students turned the board so that the desired units (dots or
drawn unit lengths to make squares) were on the left side
and top. The Grade 4 dry-erase board had an array of 50
by 100 dots 4 mm apart. The same small circles or +
marks were used every 10 units to differentiate dot arrays
from arrays made of drawn unit squares (an area model).
For other visual supports for place-value and counting that
were on the whiteboards see [22].
Our research data indicated that the two methods for

each kind of multidigit computation to be described below
in the Results section were accessible to teachers and to
students. Most students could make drawings for and do
accurately at least one multidigit method. Many students
could explain at least one method and at least a third of
most classes could explain two methods. This
performance was considerably above that for classes of
these teachers in earlier years. These methods and
approaches were therefore used in a mathematics program
written by the author and published by a major publisher
Houghton Mifflin Harcourt [23].
Step 4: Compare the identified methods, teaching

supports, and standards to those in the high-achieving
East Asian countries China, Japan, and Korea; clarify
the confusions in the term “the standard algorithm”;
and articulate and use criteria for
mathematically-desirable and accessible multidigit
computation methods.
During Step 3 an ambitious national effort in the United

States was undertaken to agree on grade-level standards
common to all states. Up to this point each of the 50 states
had their own standards, with variations by as much as
three years across states. Thus large amounts of time were
spent on what to teach and on taking apart math programs
to fit standards of a particular state. This left little time to

focus on how to improve teaching. The new Common
Core State Standards focused on understanding and on
fluency [24] and had approaches and grade-level
multidigit computation topics consistent with the research
in Step 3.
However, there were many confusions about the

meaning of the words strategies, algorithms, and “the
standard algorithm” that were used in the Common Core
State Standards. Many educators took the word strategies
to mean “student invented” and algorithms to be bad and
to be delayed or avoided because historically algorithms
were frequently taught without understanding. The term
“the standard algorithm” was particularly difficult
because this was interpreted as “the method I learned in
school” or “the method in my current math program.”
These methods varied, and they were often not easy to
understand or explain or teach with any understanding. So
some educators were spending a lot of time on student
strategies that did not generalize to all numbers or to
larger place values although the Common Core State
Standards emphasized generalizable methods of multidigit
computation. Other educators were teaching traditional
methods that resulted in many errors. Teachers and math
programs were using many different methods with no
criteria for mathematical desirability or accessibility of the
methods.
To clarify meanings of these words in the Common

Core State Standards, Fuson and Beckmann clarified the
meaning of the disputed vocabulary, developed criteria for
mathematical desirability of written methods, and
described the two methods for each multidigit
computation that had been supported by the research in
Steps 1, 2, and 3 [25]. These are all described in the
Results section below. Although the method most
frequently used in a country may vary across countries,
the tendency not to question that current common method
occurs in different countries. So using a mathematical
definition of the desirability of methods, such as we
outline in the Results section, can be of value in various
countries in judging the desirability of the method
commonly used at that time.
To assess the generalizability of the identified methods

across high-achieving countries, Fuson and Li [3]
analyzed methods used and textbook supports for
multidigit addition and subtraction in China, Japan, and
Korea. This was compared to methods and textbook
supports in the Math Expressions program developed in
Step 3. Fuson and Li [26] examined math standards in
China and the United States to assess their support of the
identified mathematically-desirable and accessible
methods.
The consensus methods revealed by the research in

Steps 1 through 4 are discussed next along with the visual
and linguistic teaching supports used to support student
and teacher understanding and explaining these methods.
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Criteria for mathematically desirable methods are
summarized and used to evaluate various methods.

3. Results

3.1. What Is "the Standard Algorithm"?

Because there are many different algorithms used over
time and in different countries, no one method can be “the
standard algorithm”. Fuson and Beckmann [25] analyzed
documents and dialogue about this issue and concluded
that these sources together indicate “that the standard
algorithm for an operation implements the following
mathematical approach with minor variations in how the
algorithm is written:
 decomposing numbers into base-ten units and then

carrying out single-digit computations with those
units using the place values to direct the place value
of the resulting number; and

 using the one-to-ten uniformity of the base ten
structure of the number system to generalize to larger
whole numbers and to decimals.” (p. 15)

This definition highlights the importance of students
knowing accurate and rapid enough single-digit methods
of adding, subtracting, multiplying, and dividing. How
learning these with understanding can support accurate
multidigit methods will be discussed for each operation
below. The definition above also clarifies that base-ten
place-value must be understood and supported for
meaningful multidigit methods. Useful place-value
approaches will also be discussed for each operation.
In the past in the United States and in many other

countries, teaching “the standard algorithm” has too often
meant teaching numerical steps by the teacher
demonstrating them and having students memorize the
steps rather than understand and explain them. The
Common Core State Standards [24] clearly do not mean
for this to happen. Students begin by making sense of and
explaining a multidigit computation method. In the initial
grade in which a multidigit computation is introduced, the
standards specify that students are to
 use concrete models or drawings and strategies based

on place value, properties of operations, and/or the
relationship between addition and subtraction; relate
the strategy to a written method and explain the
reasoning used. [Grade 1 addition 1.NBT.4 and
Grade 2 addition and subtraction 2.NBT.7 and 9],

 illustrate and explain the calculation by using
equations, rectangular arrays, and/or area models.
[Grade 4 multiplication and division 4.NBT.5 and 6].

However, the Common Core State Standards also
specify in the critical areas on the first page for these
grade levels that students are to “develop, discuss, and use
efficient, accurate, and generalizable methods” for

adding/subtracting (Grades 1 and 2) and for
multiplying/dividing (Grade 4). So from the very
beginning grade for a kind of multidigit computation
teachers need to help students make sense of and explain
written computation methods that may be elicited from
students but also ensure that students develop, discuss,
and use efficient, accurate, and generalizable methods.

3.2. Multidigit Addition

3.2.1. The Best Method
To do the necessary sense-making and explaining,

students need experience with place-value concepts that
includes being able to use visual representations of
place-value quantities (e.g., hundreds, tens, and ones) to
support carrying out and explaining their written method.
We show in Figure 1 a Grade 2 student explaining using
drawings of ones, tens, and hundreds the method
identified as the best written version of the standard
addition algorithm in the Fuson and Beckmann [25] and
Fuson and Li [26] papers. This method was also identified
as an accessible and generalizable method in the National
Research Council Report Adding It Up [5] and in the
NCTM Research Companion to Principles and Standards
for School Mathematics [20]. As outlined in Step 3 above,
the quantities in the drawings can be built up
meaningfully by having students draw line segments
through vertical columns of ten dots. Ten such vertical
columns can be boxed to make 100 (100 ones and ten tens
at the same time). Students draw to show various 2-digit
and then 3-digit quantities.
Figure 1 shows how relating each step of the written

method to the drawing and explaining that step using
place-value language enables listeners to understand the
explainer. Following such a student explanation by
questions from other students as shown in the bottom of
Figure 1 supports sense-making by the whole class
because they can be invested in listening closely so they
can ask questions they have or questions to help
classmates understand an important point.
Notice also how the drawings support learning

more-advanced single-digit addition methods when
numbers are drawn using groups of 5. For example, one
can see that 9 needs 1 more to make ten and that 1 is taken
from the 7 to leave 6. So 9 + 7 = 10 + 6, which is easy if
students understand teen numbers as 1 ten and some ones.
This method then can be done mentally, as indicated by
Jorge’s question. Such make-a-ten methods are taught in
East Asia [27 – 31] but have not been taught frequently in
the United States before the Children’s Math Worlds
Project began doing so as early as Step 2 above. Such
methods are abbreviations of the experientially earlier two
levels of solution methods: 1) counting all of the objects
and 2) counting on from one addend, such as counting on
seven from nine: nine, ten, eleven, twelve, thirteen,
fourteen, fifteen, sixteen [32,5]. The three levels of
counting all, counting on, and make-a-ten methods can be
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done for larger units such as tens, as the explainer did in
step c. The make-a-ten methods are now more commonly
taught in the United States because these methods are
explicitly in the Common Core State Standards (1.OA.6)

and the three prerequisite understandings for the
make-a-ten methods are standards in Kindergarten
(K.OA.3 and 4, K. NBT.1); see [33] for kindergarten
children enacting these prerequisite understandings.

Figure 1. Grade 2 related explanation, drawing of quantities, written method, and questions for the New-Groups-Below Method for adding

3.2.2. Variations of Written Methods That Decompose the Place Values and Criteria for Mathematically Desirable
Written Methods to Introduce in the Classroom

Figure 2 below shows four variations of written methods that decompose the place values--the hundreds, tens, and
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ones. The drawings at the top of Figure 2 can be used to explain any of the methods for 3-digit numbers. Methods E, F,
and G generalize easily to larger numbers; each is shown at the bottom of Figure 2 for 6-digit numbers. These methods
have small variations in where and how the new one ten and new one hundred are written. Their similarities underscore
how important it is to have mathematical criteria for which method is better. Such criteria are shown in Table 1.

Figure 2. Multidigit addition methods that decompose into base ten units

Table 1 shows the criteria identified by Fuson and Beckmann [25] and Fuson and Li [26] as important to choose the
best methods to be taught in the classroom. This table combines features of both papers, which vary in specificity. No
methods met all criteria, but one addition and one subtraction method met more criteria than other methods. Table 2
uses these criteria to analyze Methods E and G in Figure 2. Method G is the current common method in the United
States, but it has several disadvantages compared to the new Method E.

Table 1. Criteria for Emphasized Written Methods That Should be Introduced in the Classroom

1. Variations that support and use place value correctly because understanding and using place value is crucial:

a. Adding/subtracting like quantities is made easier by aligning like places (units).

b. It is easy to see the teen total for the new grouped or ungrouped unit.

c. It is easy to see where to write the new unit.

2. Variations that make single-digit computations easier, given the centrality of single-digit computations in algorithms.

3. Variations that allow children to write teen numbers in their usual order (e.g., for 14 write the 1 and then the 4).

4. Variations in which all of one kind of step is done first and then the other kind of step is done rather than alternating, because
variations in which the kinds of steps alternate can introduce errors and be more difficult.

5. Variations that keep the initial multidigit numbers unchanged because they are conceptually clearer.

6. Variations that can be done left to right are helpful to many students because many students prefer to calculate from left to right.

Note. This table is adapted from and combines elements of related tables in Fuson and Beckmann [25] and Fuson and Li [26].
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Table 2. Criteria Met by the New-Groups-Below Method E and Not Met by the New-Groups-Above Method G

Generalizable and Accessible
New-Groups-Below Method E

Generalizable and Not So Accessible
New-Groups-Above Method G

1. Variations that support and use place value correctly because understanding and using place value is crucial.
b. It is easy to see the teen total for the new grouped unit in Method E where the new one ten group and the extra are near each other. For
example, see the 16 ones and the 14 tens for Method E. The 16 ones are especially easy to see in Step 6 in Figure 1. In the
new-groups-above Method G these teen numbers are widely separated and difficult to see as teen numbers.
c. It is easy to see where to write the new unit: The 1 ten for the 16 ones is written in the column just to the left of the 6 below in the ones
column and similarly for the 14 tens in the tens column. In the New-Groups-Above Method G some children say that the separation of
the teen numbers makes it more difficult to put the new 1 group in the next left column.
2. Variations that make single-digit computations easier, given the centrality of single-digit computations in algorithms: In Method E one
adds the two larger numbers first: add the 5 tens and 8 tens to get 13 tens and then add the 1 new ten waiting below. In Method G
children may forget to add the 1 new group above if they add the larger numbers first. And adding the 1 to the top number and adding
that total to the second number means that the child has to add a number they do not see (6) and ignore a number they do see (5) in order
to get 14 tens.
3. Variations that allow children to write teen numbers in their usual order left to right, which is the one ten and then the ones, so 1 then 6
or 1 then 4 (tens): This is easy to do for Method E, but for Method G children are often told to write the 6 and carry/regroup the 1, the
opposite order to their usual way of writing numbers, which is left to right.
5. Variations that keep the initial multidigit numbers unchanged because they are conceptually clearer: Method E does not change the
original addends 159 or 187. For Method G some children object to writing 1 above the top number because they say that you are
changing the problem (and you are).

Method D in Figure 2 also scores high on the criteria in
Table 1, but Method D becomes cumbersome for large
numbers. Therefore we call it a Helping Step Method that
shows with expanded notation how students are adding
digits in a column with the same place values. Some
students find it helpful to see the place values with the
zeroes that hold the values in their places. Place value is a
more difficult conceptual construction for students
speaking English where the tens are not explicitly named
as tens than for East Asian or other children who say ten
six for 16 and one hundred five ten for 150. For this
reason Math Expressions uses the layered place-value
cards shown in Figure 3 where the single-digit place
values on the left (3 4 6) can be seen as the place values 3
hundreds 4 tens 6 ones when the cards are moved apart as
shown on the right. The backs of these cards show the
number of hundreds, tens, and ones as in the drawings
used in Figure 1 (3 hundred-boxes, 4 ten-sticks, 6 ones
circles). The Helping Step Method can be done from the
left or from the right, which supports productive
discussions and helps students who prefer to operate from
the left. Students can also use regular base-ten words to
describe numbers as well as English words. So they might
say 5 tens plus 8 tens is 13 tens or fifty plus eighty is one

hundred thirty.

Figure 3. Helping Step Expanded Notation Methods and Layered
Place-Value Cards to show meanings of places

There are also methods that begin with one whole
number and count on or add on the other number [25,32].
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But these become difficult even for three digits because
the counting on by hundreds, tens, and ones is difficult.
These methods do not generalize easily for larger numbers,
so a generalizable method needs to be introduced and
discussed at each grade.

3.3. Multidigit Subtraction

The major task for teaching multidigit subtraction is
how to help students avoid the very common error of
subtracting the smaller from the larger number within a
column even if the smaller number is on the top. Even
when students know not to do this, a method widely used
in the United States seduces students into making this
error. In Figure 4 we see the common error at the top.
Below is shown the alternating steps in a common way to
write multidigit subtraction: Ungroup a column, subtract
that column, ungroup the next left column, subtract that
column, etc. Look at the second step to see how this
method sets students up to make the common error: They
have just subtracted the ones column 16 – 9 and written 7.
They move to the tens column and see a 3 on the top and 5
below. They are in “subtract mode” and their brains
rapidly produce 2 as the answer, so they write a 2.
Common Error: Subtract Within a Column the Smaller

Number from the Larger Number

The Generalizable but Not So Accessible Alternating
Current Common Method

Figure 4. The common error and how a common method seduces
students to make that error.

In contrast we show in Figure 5 a Grade 2 student
explaining using drawings of ones, tens, and hundreds the
method identified as the best written version of the

standard subtracting algorithm in the Fuson and
Beckmann [25] and Fuson and Li [26] papers. This
method was also identified as an accessible and
generalizable method in Adding It Up [5] and in the
NCTM Research Companion to Principles and Standards
for School Mathematics [20]. In this method all of the
ungrouping is done first, and then all of the subtracting is
done. This is much easier for students than alternating
these steps, and it avoids the common error intruding in
the middle of the alternating method as shown in Figure 4.
This Do-Necessary-Ungrouping-First Method also makes
it possible for students to solve from the left, which many
students prefer. They can ungroup from the left as shown
in Figure 5, and they can also subtract from the left after
they have ungrouped where needed to make every top
number larger than the bottom. But they can also ungroup
from the right and subtract from the right. Students have
great conversations about why they can ungroup and
subtract in either direction with this method. One of our
inner-city classes refused to go out to recess because they
wanted to resolve this issue to everyone’s satisfaction.
Doing all necessary ungrouping first also allows everyone
to understand the main conceptual point of subtracting:
You have to rewrite the larger number in a form that
allows you to subtract in every column. And doing this
first allows everyone to double check that all of the top
numbers are equal to or bigger than the bottom number
before one begins subtracting.
In Step a, we see another visual support that can be

used to inhibit the top-from-bottom error from the
beginning: Students draw a big loop with a stick to show
their “magnifying glass” that lets them “look inside” that
whole bigger top number to see if it is ready to subtract in
every column. All of the ungrouping is written inside that
loop, creating a conceptual focus on that top number in its
original and final written versions. This facilitates
discussion of whether ungrouping changes the total
quantity of the top number (it does not). Drawing the
magnifying glass helps students shift from a focus on the
vertical columns and subtracting the smaller number in a
column to a horizontal focus on the whole number that
may need to be ungrouped in order to subtract. So
drawing the magnifying glass helps inhibit students from
making the common subtract smaller top from larger
bottom number. This helping step of drawing the circle
and stick can be dropped when a student no longer needs
it.
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Figure 5a. Grade 2 related explanation, drawing of quantities, written method, and questions for Do-Necessary-Ungrouping-First Method Part I
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Figure 5b. Grade 2 related explanation, drawing of quantities, written method, and questions for Do-Necessary-Ungrouping-First Method Part
II—Continued

As with multidigit addition, the drawings using
5-groupings help students see and explain make-a-ten
methods for subtracting like place values within a column.
In Step d Doug does 13 – 5 (thirteen minus five) by taking
the 5 from the ten ten-sticks leaving 8 ten-sticks (5 and 3
make 8). Similarly, the 9 ones are taken from the ten ones
circles leaving one circle to get added to the 6 ones in 16.
Such methods are easier in East Asian languages where 13
– 5 is said “ten three minus five” so the ten from which
the bottom number can be taken is explicitly mentioned.
Some East Asian textbooks have written methods (see
Figure 6) that show the ten in the ungrouped top number
or assume there is a ten and just show the ones part of the
teen number because that is what varies [3]. Such methods

might be particularly helpful to less-advanced students in
those countries. Lee [29] found that low-achieving
Taiwanese students could do subtraction make-a-ten
methods better than addition make-a-ten methods but
high-achieving students were equally good at both. Lee
pointed out that the ten is said and is visible for
subtraction: 14 in 14 – 8 is said as ten four and students
can see the 1 in 14 and take 8 from that ten. Also finding
the answer involves adding 2 and the 4 they can see. In
contrast, for 8 + 6 students have no visual or auditory
reminder of the ten and also there is no visual support for
finding the answer after they break apart the 6 to be 2
added to the 8 to make ten and the 4 that must be put with
that ten.
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Figure 6. Methods in East Asian textbooks that show the 10 or assume the 10.

The frequent top-from-bottom subtraction error noted
above has been very frequent in the United States, partly
because of the usual practice before the Common Core
State Standards of introducing problems with no
ungrouping (e.g., 78 – 43) in Grade 1 and only moving to
ungrouping problems a year later, in Grade 2, after
students had already solidified a subtraction method that
seemed to work well: look at a column and subtract the
two numbers you see there regardless of their relative size.
To address this issue, no general 2-digit subtraction
methods (with or without ungrouping) are included in the
Grade 1 Common Core State Standards. Therefore, in
grade 2, subtraction with ungrouping can be addressed
first so students learn to check from the beginning to see if
they need to ungroup each column. This initial
understanding of subtracting as possibly needing
ungrouping, combined with reduced use of the alternating
method, may greatly increase understanding of subtraction
methods and contribute to a greater number of correct
answers. We have seen this effect in Math Expressions
classrooms. We also found that carrying out two
ungroupings was difficult for second graders if they did
this first for general problems such as 832 – 467, but that
it was much easier for totals within 200 such as 132 – 67.
Our students moved from 2-digit subtraction to problems
subtracting from 200 such as 200 – 67 so that they saw
immediately that they needed to ungroup one hundred to
get ten tens and ungroup one ten to get ten ones (or
ungroup 1 hundred to get nine tens and ten ones). They
then moved to problems with totals within 200 with one
or two ungroupings. Then the step to general problems
with larger hundreds such as 832 – 467 was relatively
easy.

3.4. Multidigit Multiplication and Division

Accessible and mathematically-desirable methods for
multiplication and division are shown in Figure 7 along
with the array/area models recommended in the Common
Core State Standards and used in our earlier research to
support understanding and explaining the written methods.
As discussed in Steps 2 and 3 above, students first work
with arrays of dots or with contiguous unit squares
forming a rectangle to make an area model for single-digit

numbers and later for multidigit numbers. Students then
make sketches like those shown in Figure 7 in which the
numbers refer to dots (or other things composing the array)
for an array model and to unit squares for the area model.
The Expanded Notation Method in Figure 7 shows

helping steps in blue developed by a Grade 4 class in a
high-poverty urban school. Students said that these steps
would help all of them understand what they were doing
in each step, and they wanted to start multiplying to get
the largest partial product first so they could correctly
align the other smaller partial products under this product.
They dropped the steps when they no longer needed them,
yielding the common partial products method. But we
found in the Step 3 research that even the helping steps
Expanded Notation Method was too spatially challenging
for some students. They could understand that they were
multiplying the tens and the ones in one factor times the
tens and the ones in the other factor. But they found it
much easier to write these products inside the relevant
rectangles in the array/area model and then just add these
outside the model as in the Place Value Sections Method
in Figure 7. Users of the Expanded Notation Method
initially made the Area Model sketches and stopped
making them when they no longer needed them.
These two methods meet all of the criteria in Table 1.

They both are accessible and mathematically desirable
general standard algorithms. The blue helping steps need
to be dropped for fluency, but it is better for students to
keep using them as long as they are needed because they
do not add much time to the method.
The 1-Row Method shown on the top right of Figure 7

is a current common method some people in the United
States think is “the standard algorithm.” The 1-Row
Method is more difficult than the other methods in Figure
7 because it alternates multiplying and adding steps, and it
moves from the right while the area model is done most
easily from the left. And this 1-Row Method is misleading
conceptually. When multiplying 6 tens times 3 ones, one
gets 18 tens. But the 1 in 18 tens, which is actually 1
hundred because 18 tens = 180, is written above the 4 tens.
This method does not meet criteria 1, 3, 4, 5, and 6 in
Table 1, and so it is recommended only to discuss this
misleading aspect and relate it to the area model for
understanding if it comes from a student’s home.
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Figure 7. Accessible and generalizable multiplication and division methods.

Fuson and Beckmann [25] show other ways to write the
new groups in the 1-Row Method including below in the
rows as in the New Groups Below multidigit addition
method (see Figure 8). This variation allows students to
write products in the correct places and enables them to
see the single-digit products in their correct places: 6 ones
x 4 ones = 24 ones, 6 ones x 9 tens = 54 tens, 3 tens x 4
ones = 12 tens, 3 tens x 9 tens = 27 hundreds. This method
also provides coherence between the best addition and a
good multidigit method. The 2 thousands and 1 hundred
are enclosed in a rectangle in Figure 8 to emphasize that
they are in the correct columns, which would not be the
case if they were written above the problem as in the
1-Row Method.

Figure 8. Writing the new groups below to see the single-digit
products in the correct columns

Division standard algorithms build up partial products
of the known factor to find how many such partial
products fit within the dividend (the known product). The

known factor (here in Figure 7, 67) is used as the whole
side of the array/area model, and the unknown factor is
built up along the top (40 and then 3). In the Rectangle
Sections Method students write the dividend inside the
first section (here, 2881), then find the first partial product
by multiplying 40 x 67 = 2680, write this partial product
2680 under the dividend 2881, and then subtract to get
201 that still needs to be used in the array/area model. So
this remaining 201 is written inside the next partial
products area section. Students estimate that 3 67s will fit
into 201, multiply 3 x 67 = 201, write that partial product
inside the second area section, and subtract it to see that 0
units remain to be used in the area model. The parts of the
unknown factor that make the rectangle with an area of
2881 are then added: 40 + 3 = 43.
These same steps can be recorded in the multidigit

division format used in the United States, as shown in the
Expanded Notation Method in Figure 7. This method
shows the values of all of the quantities and so supports
initial understanding when related to an array/area model.
The Digit by Digit Method only records single digits, so it
can be more difficult to understand. This method is
explained in Fuson and Beckmann [25] using conceptual
place-value language.
Multidigit division can be difficult if students feel they

have to write the exact multiplier at each place value.
Fuson and Beckmann [25] show minor variations in
which students can underestimate a multiplier and keep
adding on a partial product without erasing work already
completed.

4. Discussion
The multidigit addition and subtraction methods
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identified in this research as the best methods do
generalize easily to very large numbers. The multidigit
multiplication and division methods also generalize to
larger numbers, but they can become unwieldy for very
large numbers. Computing on squared paper can help
keep place values aligned and correct. However, many
people around the world are questioning the need for
multidigit multiplication and division problems larger
than those shown here in Figure 7. The problems shown
here are big enough for students to understand the
mathematical issues involved in multidigit multiplication
and division and to generalize these numeric methods to
algebraic work with polynomials in later years.
The mathematical approaches of the multidigit whole

number adding and subtracting methods described here
also apply to the adding and subtracting of decimals. The
lines of reasoning for whole number multiplying and
dividing also extend to decimal multiplication and
division. The extensions of these written methods for
whole number computation to decimal computation are
discussed in [34,35].
In the United States many programs now support

students to discuss different methods because students
may develop different methods, and a student may
understand one method better than another. But this can
be prolonged with students not moving to develop, discuss,
and use efficient, accurate, and generalizable methods in
the first year that computation is introduced (see the
Common Core State Standards critical areas, as discussed
above). And discussing too many methods can be
confusing and take a lot of class time. Using a Math Talk
Community in which students make drawings to explain
steps in written methods and their classmates ask
questions is vital for making sense of all methods
discussed in a class. One can start with student methods
and then introduce the accessible and
mathematically-desirable methods described here if they
do not come from students. These can be introduced as
methods a student in the class did last year or in a story
scenario as methods done by the characters in the story
(e.g., Tony and Maria who own a store). Such methods
need to be shared with parents as worked examples or by
posting videos on safe school websites of students
explaining the method relating each step to a drawing as
in Figures 1 and 5. Such videos are powerful in helping
parents understand what students can actually learn and do
and what the Common Core State Standards or any
country’s standards can expect as understanding and
explaining. In the following year or two these methods
will then begin coming from home as families learn and
understand them. All methods used in a classroom can be
compared to identify how they are alike and different.
This helps students understand the big ideas involved in
multidigit adding, subtracting, multiplying, and dividing.
The current common methods that are more difficult

and may stimulate errors as discussed above may enter the

classroom because family members teach them. These
more difficult methods need to be linked to drawings of
quantities and explained and related to other methods. If
methods from home are not discussed and explained in
class, students may combine a method from school and a
method from home and thus make errors. For example,
see Ron for a method of multidigit subtracting widespread
in Latin America and coming from student homes that
was combined with the multidigit subtracting discussed
here to create an incorrect method [36].

5. Conclusions
Students and teachers can understand and become able

to explain multidigit adding, subtracting, multiplying, and
dividing using methods that are more accessible and more
mathematically desirable than many methods now taught
around the world. Sense-making in ways discussed here
can reduce errors and engender understanding by students
and by teachers.
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