Base-Ten Knowledge: Language, Meanings, and Units

Professor Emerita Karen C. Fuson Northwestern University karenfuson@mac.com

Discussion presented at The Mathematical Cognition and Learning Society, June, 2024

Please see my website karenfusonmath.com or karenfusonmath.net for 22 hours of audio-visual Teaching Progressions for all CCSS domains and for my papers, classroom videos, presentations, and supports for teaching remotely.

I am sorry that I am not able to be at the conference in person.

Please email any questions you have to <u>karenfuson@mac.com</u>

Some slides have some detail that I do not discuss. Please request the PPT if you would like to see some slides again. The symposium papers use creative and innovative ways to focus on the advanced place-value competence composing and decomposing multiunits.

Visual salience or disguising of multiunits?

What knowledge is prerequisite to other knowledge?

What does such knowledge predict?



Children build successively more embedded concepts and counting skills for 2-digit numbers.

Only children using European languages or others that have irregular names for the tens use the Count-by-Tens and ones concept. Children using East Asian and other languages

that name the tens such as two ten, three ten, etc. use the Place-Value Tens and Ones concept.

> Chan et al., 2014, established that Chinese children use the Unitary Multidigit and then the Decade and Ones (Counting on) and then the Separate Tens and Ones counting strategies.



Shifting from counting by tens to counting by ones is difficult for many students. It needs practice as in slide 6.



|    |    | _ |    | <br> | <br> |    | <br> |    |    | <br> | <br> | <br> |  |
|----|----|---|----|------|------|----|------|----|----|------|------|------|--|
| Ι  | 11 |   | 21 | 31   | 41   | 51 | 61   | 71 | 81 | 91   | 101  | 111  |  |
| 2  | 12 | 1 | 22 | 32   | 42   | 52 | 62   | 72 | 82 | 92   | 102  | 112  |  |
| 3  | 13 | 1 | 23 | 33   | 43   | 53 | 63   | 73 | 83 | 93   | 103  | 113  |  |
| 4  | 14 | 1 | 24 | 34   | 44   | 54 | 64   | 74 | 84 | 94   | 104  | 114  |  |
| 5  | 15 | 1 | 25 | 35   | 45   | 55 | 65   | 75 | 85 | 95   | 105  | 115  |  |
| 6  | 16 | 1 | 26 | 36   | 46   | 56 | 66   | 76 | 86 | 96   | 106  | 116  |  |
| 7  | 17 | 1 | 27 | 37   | 47   | 57 | 67   | 77 | 87 | 97   | 107  | 117  |  |
| 8  | 18 | 1 | 28 | 38   | 48   | 58 | 68   | 78 | 88 | 98   | 108  | 118  |  |
| 9  | 19 | 1 | 29 | 39   | 49   | 59 | 69   | 79 | 89 | 99   | 109  | 119  |  |
| 10 | 20 |   | 30 | 40   | 50   | 60 | 70   | 80 | 90 | 100  | 110  | 120  |  |

Student leader points down each column as students flash ten fingers then shift to ones.



Sequence tens and ones structure

Stop. Freeze. Now count by ones.





Student leader: What number do you see? 95 How may tens and how many ones? 9 tens and 5 ones Let's count the tens together (pointing down each column): 1, 2, 3, 4, 5, 6, 7, 8, 9 tens Let's count the ones together (pointing to each circle): 1, 2, 3, 4, 5 ones



K and

Grade 1



Ninety-five is made from ninety and five. Decade and ones structure



Student math drawing for 146



Grade 2

Secret code cards to show quantity meanings of the concatenated single digits



## Grade 2

Compose ones to make ten and compose ten tens to make one hundred



#### Grade 2

Decompose ten to make ten ones and descompose one hundred to make ten tens





Advanced place value knowledge Multiunits out of order or composing of units

Composing ones to

make a ten

#### Out of order

How many small squares are there?



| How many small squares are there? |
|-----------------------------------|
|                                   |

## Initial place value knowledge Hundreds tens and ones in order

How many small squares are there?



#### Composing tens to make a hundred

| How many small squares are the | ere? |  |  |
|--------------------------------|------|--|--|
|                                |      |  |  |

# Composing tens to make a hundred AND composing ones to make a ten

How many small squares are there?

|   |    |   |           |           |   |     |   | - |
|---|----|---|-----------|-----------|---|-----|---|---|
|   |    |   |           |           |   |     |   | L |
|   |    |   |           |           |   | 1   |   | L |
|   |    |   |           |           |   | L   | _ | L |
| _ | +  | - | $\square$ | $\square$ | _ | - 1 | _ | F |
| + | +  | - | ++        | $\square$ | _ | ŀ   | - | H |
| + | +  | - | ++        | H         | _ | ł   | - | H |
| + | ++ | - | ++        | H         | - | ŀ   | - | H |
| + | +  | + | ++        | H         | - | ŀ   | - | F |
| + | +  | + |           | H         |   | ŀ   | - | F |
| _ | _  | _ |           | _         |   |     |   | - |

|   |     |     |     | П |
|---|-----|-----|-----|---|
| Н | HH  | H   | Н   | Н |
| н | HF  | H   | H   | Н |
|   | DE  |     | E . |   |
|   |     |     |     | П |
| H | HHF |     | H   | Н |
| Н | HF  | H   | Н   | Н |
| Н | HE  | 1 H |     |   |

Chan et al., 2014

## See and remember a sequence of spatial locations



Corsi Block Task

Use embedded cardinality in **left to right sequence** 



Embed a cardinality in the **left to right sequence** of a number list from 1 to 100



Number Line Estimation Task

Count embedded tens in **left to right sequence** and compose ones to make a ten



#### Strategic Counting Task

#### **Chan and Wong**

## **Transcoding expanded errors**

Ex: writing the numeral "two thousand seven hundred fortythree" as "200743" or "2000700403" or "200070043" or "2700403", etc.

## **Predominantly in K**

## **Base ten invented counting errors**

Count sequence showed a transistion to a different unit but did not shift to the new count sequence by that unit [not shift or not know?]

> Prompts to count by tens or by hundreds were given to focus children on counting by higher units

## **Predominantly in Grade 1**

The invented counting errors-only group had higher multidigit calculation performance compared to those who made neither error, p = .007 In domains like place value where there are multiplie conceptions that build and relate, <u>use prompts</u> to uncover less accessible knowledge.

#### Kamii digit meaning task

Show a card with 16 on it. Count out that many cubes.

#### The interviewer then pointed to the 6 and said, What does this part mean? Show me with the cubes what this part means.

The interviewer then pointed to the 1 and repeated the question.

Prompt 1: That is one thing it means. Can you think of something else that this might mean? Can you show me with the cubes?

Prompt 2: This is a teen number. What does this (point to the 1) mean in the teen number? Can you show me with the cubes?

Kamii (1989) G2 and G3 children only 16% and 30% showed ten chips for the 1 Math Expressions G1 children 64% immediately and 96% after Prompt 2. Math Expressions full-day K children 51% immediately and 77% after Prompt 2. Prompts revealed underlying knowledge not accessed first. Opportunity to learn is crucial.

16



Count embedded tens in left to right sequence and compose ones to make a ten

There is no such thing as a mental number line in children's heads. There is a mental number LIST: an internalized sequence of counting words.



#### Strategic Counting Task

Please use clear specific language.

Describe partial understanding as accurately and as detailed as possible and do not introduce or use general terms like relative, approximate, positional principle because these are not well defined and muddy the waters.

## **Place Value**

| imes 10 (larger) $	imes$ 10 (smaller) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               |                |                          |                  |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------|--------------------------|------------------|--|--|--|--|--|
| 1                                     | 1  10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1 $ 10 $1$ |                |               |                |                          |                  |  |  |  |  |  |
| Thousands                             | Hundreds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tens           | ONES          | Tenths         | Hundred <mark>ths</mark> | Thousandths      |  |  |  |  |  |
| 1,000.                                | 100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.            | 1.            | 0.1            | 0.01                     | 0.001            |  |  |  |  |  |
| <u>1000</u><br>1                      | <u>100</u><br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>10</u><br>1 | <u>1</u><br>1 | <u>1</u><br>10 | <u>1</u><br>100          | <u>1</u><br>1000 |  |  |  |  |  |
| \$1,000.00                            | \$100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$10.00        | \$1.00        | \$0.10<br>📀    | \$0.01                   | \$0.001<br>•     |  |  |  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |               |                |                          |                  |  |  |  |  |  |

Please email any questions you have to karenfuson@mac.com

Please request the PPT if you would like to see some slides again.

Please see my website karenfusonmath.com or karenfusonmath.net for 22 hours of audio-visual Teaching Progressions for all CCSS domains and for my papers, classroom videos, presentations, and supports for teaching remotely.

#### Papers drawn from for this PPT

## These all are under publications on my websites karenfusonmath.net and karenfusonmath.com

Fuson, K. C. (1990). Conceptual structures for multiunit numbers: Implications for learning and teaching multidigit addition, subtraction, and place value. *Cognition and Instruction, 7,* 343–403

Fuson, K. C. (1990). Issues in place-value and multidigit addition and subtraction learning. <u>Journal for Research in</u> <u>Mathematics Education</u>, <u>21</u>, 273-280.

Fuson, K. C., & Briars, D. J. (1990). Base-ten blocks as a first- and second-grade learning/teaching approach for multidigit addition and subtraction and place-value concepts. Journal for Research in Mathematics Education, <u>21</u>, 180-206.

Fuson, K. C., Wearne, D., Hiebert, J., Human, P., Murray, H., Olivier, A., Carpenter, T., & Fennema, E. (1997). Children's conceptual structures for multidigit numbers at work in addition and subtraction. <u>Journal for Research in Mathematics</u> <u>Education</u>, 28, 130-162.

Fuson, K. C., Smith, S. T., & Lo Cicero, A. (1997). Supporting Latino first graders' ten-structured thinking in urban classrooms. Journal for Research in Mathematics Education, 28, 738-766.

Ho, C. S., & Fuson, K. C. (1998). Effects of language characteristics on children's knowledge of teens quantities as tens and ones: Comparisons of Chinese, British, and American kindergartners. <u>Journal of Educational Psychology</u>, 90, 536-544.

Fuson, K. C. (1998). Pedagogical, mathematical, and real-world conceptual-support nets: A model for building children's mathematical domain knowledge. <u>Mathematical Cognition</u>, <u>4</u>(2), 147-186.

Sequence Tens and Ones are conceptions and skills in European languages NOT in East Asian regular ten counting systems Chan et al., 2014, established that East Asian children use the Unitary Multidigit and then the Decade and Ones (Counting on) and then the Separate Tens and Ones counting strategies.



*Figure 1*. Unitary triad (quantity, number word, written numeral) and common incorrect multidigit conception derived from the appearance of the multidigit numbers



*Figure 2*. A developmental sequence of conceptual structures for two-digit numbers: the UDSSI triad model

|                                                                  | Со                                                           | TABLE 2<br>nceptual Structures for       | 2<br>Multiunit Numbers     |                                  |                          |
|------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|----------------------------|----------------------------------|--------------------------|
| Name of the Conceptual Structure                                 | ?                                                            | Na                                       | ture of the Conceptual Si  | tructure                         |                          |
| Features of the marks<br>Visual layout                           |                                                              |                                          | <u> </u>                   |                                  | <u> </u>                 |
| Positions ordered in increasing value from the right             | Fifth                                                        | Fourth                                   | Third                      | Second                           | First                    |
| Features of the words                                            |                                                              |                                          |                            |                                  |                          |
| Words ordered in domestic                                        | Wan                                                          | Qian                                     | Bai                        | Shi                              | Yi                       |
| value as they are said                                           | Ten-thousand                                                 | Thousand                                 | Hundred                    | Ten                              | Ones                     |
| Multiunit structures                                             | $\sim$                                                       |                                          |                            |                                  |                          |
| Multiunit quantities                                             |                                                              | $\square$                                |                            | ]                                | Ð                        |
| Regular ten-for-one and<br>one-for-ten trades                    | Ten thousands                                                | Ten hundreds<br>ten one                  | Ten tens<br>ten one        | Ten ones<br>ten one              | Iten                     |
| Positions/values as<br>cumulative trades                         | Four trades                                                  | Three trades                             | Two trades                 | One trade                        | No trades                |
| Positions/values as<br>cumulative multiples of ten               | Four multiples<br>of ten<br>$(t \times t \times t \times t)$ | Three multiples<br>of ten<br>(t × t × t) | Two multiples<br>of ten    | One multiple<br>of ten           | No multiples<br>of ten   |
| Positions/values as<br>exponential words<br>for multiples of ten | Ten to the fourth power                                      | Ten to the third<br>power                | Ten to the second<br>power | (t)<br>Ten to the first<br>power | Ten to the zero<br>power |
| Positions/values as<br>exponential marks<br>for multiples of ten | 104                                                          | 103                                      | 102                        | 101                              | 100                      |

Knowledge of counting one to nine, written digits 1 to 9, cardinal quantities one to nine

Move left Relative spatial locations Match multiunit names to location and to multiunit quantities Move right

See quantities as so many ones

#### **Composing/decomposing by tens**

Repeated trading to give positions and values

Exponential symbols and meanings as repeated grouping by ten



FIG. 3. Conceptual-support net: Real-world, mathematical, and meaningful referent-word-notation triads

### **Traditional teaching**

Conceptual-support net Including all referents including student drawn quantity math model

**Use manipulatives** 

| TABLE 1<br>Named-Value and Unnamed Position-Value Words and Written Marks |                                                                       |                                  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|--|--|--|--|
| Numbers<br>Expressed As                                                   | Named-Value System                                                    | Unnamed<br>Position-Value System |  |  |  |  |
| Spoken words                                                              | Two ten-thousand nine thousand five hundred<br>eight ten three        | Two nine five eight three        |  |  |  |  |
| Written marks                                                             | or two wan nine qian five bai eight shi three<br>2 TTh 9 Th 5 H 8 T 3 | 29583                            |  |  |  |  |

Concatenated single digit conception

## Place value/positional system

Value of a position n places to the left or right of 1 is Base x Base x Base n-1 times Symmetry is around the ones/single units place This regular repetition creates multiple meanings of each place as so many ones and as so

many of each of the units smaller than it: 700 is seven hundred ones and 70 tens and 7 hundreds

#### **Base-ten system**

needs nine unique symbols [now usually 1 2 3 4 5 6 7 8 9] to put in places to say how many of the units in that place and it needs 0 to make the next larger unit as 10 (one ten made from ten ones) of the place to the right

Values are created by powers of ten/repeated multiples of ten or of one-tenth that are composed n-1 times to make adjacent positions