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Why Accessible Algorithms?



Why do we need accessible algorithms?

Why don’t we just teach the familiar “standard 
algorithms” that I learned?

Because those methods are difficult 

and lead students to make mistakes.



Furthermore, there is 

no one “standard algorithm.” 

There are variations in ways 

to record efficient, accurate, 

and generalizable methods that 

form the collection of standard algorithms.

These variations are used in different countries 
and at different times.



Some standard algorithms are 

better than other standard algorithms.

My research is about these.  

These are in classroom videos, papers, and 
Teaching Progressions on my website

karenfusonmath.net or karenfusonmath.com

These better standard algorithms are the 
mathematically desirable and accessible 

methods in Math Expressions.



Watch on my website videos from public school classrooms 
with children from backgrounds of poverty and many children 

who are not native English speakers as they explain the 
methods I discuss today. 

These are on my website karenfusonmath.com or karenfusonmath.net 
under Classroom Videos and then

A. Classroom Components and Part 3 Math Talk has:

Math Talk Introduction

Grade 1 addition with regrouping invented method and 

New Groups Below method

Grade 2 Subtraction with Ungrouping First

Grade 4 Expanded Notation Multiplication



On my website karenfusonmath.net and karenfusonmath.com 
are publications describing the research and these methods:

The Best Multidigit Computation Methods: A Cross-cultural Cognitive, 
Empirical, and Mathematical Analysis, Karen C. Fuson.  Universal Journal of 
Educational Research 8(4): 1299-1314, 2020 DOI: 10.13189/ujer.2020. 080421

Fuson, K. C. & Beckmann, S. (Fall/Winter, 2012-2013).  Standard algorithms in 
the Common Core State Standards.  National Council of Supervisors of 
Mathematics Journal of Mathematics Education Leadership, 14 (2), 14-30.  

Fuson, K. C., Kiebler, S., & Decker, R. (2024).  Accessible Standard Algorithms 
for Understanding and Equity. Mathematics Teacher: Learning and Teaching 
K-12. Volume 117, Issue 04, April, 268–275.  DOI: 10.5951/MTLT.2023.0212

Fuson, K. C., Kiebler, S., & Decker, R. (2024).  Accessible Standard Algorithms 
for Understanding and Equity Part 2:  Multidigit and Decimal Subtraction, 
Multiplication, and Division. Journal of Education and Development, Vol. 8, 
No. 2, May, 2024. Online version.



The CCSS say in the critical area for each first 
year of a given computation: “Students develop, 

discuss, and use efficient, accurate, and 
generalizable methods.” 

Standard algorithms are such methods, so these 
can and should be introduced early. 

The CCSS do not say to wait until Grade 4 to do 
“standard algorithms.”



What Is the Standard Algorithm?

The NBT Progression document summarizes that the standard 
algorithm for an operation implements the following 
mathematical approach 

with minor variations in how the algorithm is written:

•decompose numbers into base-ten units and then carry out 
single-digit computations with those units using the place 
values to direct the place value of the resulting number; and  

•use the one-to-ten uniformity of the base ten structure of the 
number system to generalize to large whole numbers and to 
decimals.

To implement a standard algorithm one uses a systematic 
written method for recording the steps of the algorithm.



What are the best computation methods for multidigit 
addition, subtraction, multiplication, and division?

I today summarize 20 years of classroom research.

 

These methods were all created by students.  They were then tried in 
many different classrooms to see if they are accessible.  They are.  
Students, teachers, and parents understand them.

They are more mathematically desirable than other methods.

They are all standard algorithms.

These standard algorithms are the accessible and mathematically 
desirable methods in Math Expressions.



Multidigit Addition

Many of us are so familiar with writing the New Groups 
Above addition problem that we do not recognize how 
difficult it is for students. But when we contrast it to 
writing the New Groups Below the problem, we can see 
the difficult aspects of the New Groups Above method 
that is familiar to many of us but is not familiar to most 
of our students.

 



New Groups Below is the best multidigit addition method.

Think about why New Groups Below is 
better than writing the new one ten 
and new one hundred above the 
problem.

New Groups Above



Fuson and Beckmann (NCSM, Fall/Winter, 2012-2013) identified

 criteria for algorithms that should be taught in the classroom.

I will exemplify these criteria by comparing 

the better New Groups Below 

to the problematic New Groups Above 

in several slides.



Ways in which New Groups Below is better than New Groups Above

Variations that support and use place value correctly:

It is easy to see the teen total in New Groups Below because they are 
close together.  For example, see the 16 ones and the 14 tens.

In the New Groups Above method these teen numbers are widely 
separated and difficult to see as teen numbers.

It is easy to see where to write the new unit: The 1 ten for the 16 
ones is written in the column just to the left of the 6 below in the 
ones column and similarly for the 14 tens in the tens column. 

In the New Groups Above Method, some children say that the 
separation of the teen numbers makes it more difficult to put the 
new 1 group in the next left column.



Ways in which New Groups Below is better than New Groups Above

Variations that make single-digit computations easier:

In New Groups Below one adds the two larger numbers first: add the 
5 tens and 8 tens to get 13 tens and then add the 1 new ten waiting 
below. 

In New Groups Above children may forget to add the 1 new group 
above if they add the larger numbers first. And adding the 1 to the 
top number and adding that total to the second number means that 
the child has to add a number they do not see (6) and ignore a 
number they do see (5) in order to get 14 tens.



Ways in which New Groups Below is better than New Groups Above

Variations that allow children to write teen numbers in their usual 
order left to right, which is the one ten and then the ones: 

This is easy to do for New Groups Below  (9 plus 7 is sixteen which I 
can write as 1 then 6).  

For New Groups Above, children are often told to write the 6 and 
carry/regroup the 1, the opposite order to their usual way of writing 
numbers, which is left to right.  Sometimes children have the 6 above 
the tens place because they wrote the 1 ten first and then the 6 ones.



Ways in which New Groups Below is better than New Groups Above

Variations that keep the initial multidigit numbers unchanged 
because they are conceptually clearer:

New Groups Below does not change the original addends 159 or 187.  
Each addend and the total are in their own horizontal space.

For New Groups Above some children object to writing 1 above the 
top number because they say that you are changing the problem 
(and you are).



Show All Totals is also an accessible and 
mathematically desirable standard algorithm.

It has all 5 of the above criteria 

and also two more:

It can be done from the left.

It does not alternate the adding of 
the places and the adding to make 

the total.

But it does get unwieldy for big 
numbers.



This is the most typical subtraction error.  Many students 
make this error.

What is this error?

Why do students make it?

What can we do about it?



What is this error?  Focusing on the vertical columns 
and subtracting the two numbers they see and not 
thinking of the whole multidigit numbers 346 and 159.

Why do students make it?

They may have problems with no ungrouping first so 
they get used to just looking at columns and subtracting.



Here is a powerful approach to prevent this error.

Draw attention to the total in the subtraction 
situation by encircling it.  We call this a 
magnifying glass because you are looking 
inside the total to find its parts.

Do not draw or show the known 

addend 159 because it is part of 346.

The magnifying glass stops students

from subtracting right away and

reminds them to check each place

to see if they need to get more in

order to subtract in that place.

What can we do about it?



The Same Error Is Created by the Alternating Steps

in the Common Standard Algorithm 



So the best multidigit subtraction method does not 
alternate ungrouping and subtracting.  You do all necessary 
ungrouping first and then subtract in all places. Each of 
these processes can be done left to right or right to left.

Step 2: Check to ungroup as 
needed, moving to the right 
to check the ones place.

Step 3: Subtract in each 
place moving from left to 
right or from right to left.



The 1-row method on the right is taken to be “the standard 
algorithm”.  But see how it uses wrong place-values for the step 
60 x 3 = 180 but the 1 hundred is written above the tens place.

This method is also difficult because it alternates the multiplying step 
and the adding step. The other two standard algorithms shown here do 
all of the multiplying first and then all of the adding. This is much easier.



Notice how the area model is helpful for all methods to see 
what place in one factor gets multiplied by what place in 
the other factor.



Expanded Notation is the best multidigit multiplication standard algorithm.

The steps in blue can be dropped whenever students are ready.  Then the 
partial products can be written under the factors.

Some students cannot handle the complex lay-out of Expanded Notation, 
but they can make and understand an area model and add all of the 
partial products as shown in the Place Value Sections standard algorithm.

Both of these standard algorithms do all of the multiplying first and then 
all of the adding. This is much easier.



Relationships between multidigit multiplication and multidigit 
division are important.  The area model can be used for both 
operations with division seen as finding the place values 40 and 
3 in the unknown factor along the top of the rectangle.

67 x 43 = 2881                                       67)2881 = 40 + 3 = 43



The two accessible and mathematically desirable 

division standard algorithms are:

Rectangle Sections finds each part of the unknown factor within the area model.

Expanded Notation puts the rectangle sections above each other 

to subtract successively.

The first two methods show the values of the places within the algorithms.  
Digit by Digit uses only single-digit values that can easily get placed in the 
wrong place and make an error.



Major steps in making computation meaningful: 

Students make drawings to show place values and explain 
their drawings and algorithm.

Students relate drawings to numbers to make computations 
meaningful and do not use drawings just to find answers. 

Students later do not use drawings and only use written 
methods but they can go from numbers to drawings 

sometimes to retain or recall meanings.
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